M/C Vidyamandir Classes ${ }_{\text {SINCE } 1986}$

IIT JEE | MEDICAL | FOUNDATION

NAT

National Admission Test

FOR STUDENTS CURRENTLY IN CLASS

1 YEAR PROGRAM (MEDICAL)

ADVANTAGES OF JOINING EARLY

Save Minimum
₹ 40,000 * on Course FEE
Scholarship* up to 100\%

Study Free till March 2021
Study at Last Year's Fee

Pay in Easy EMIs

Sample Paper - 1 Year Program

Admission \& Scholarship Test | Medical

PAPER SCHEME :

- The paper contains 120 Objective Type Questions divided into three sections: Section - I (Physics), Section - II (Chemistry) and Section - III (Biology).
- Section I and II contain 30 Multiple Choice Questions each and Section III contains 60 questions. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE CHOICE is correct.

MARKING SCHEME :

- For each question in Section-I, II and III, $\mathbf{4}$ marks will be awarded for correct answer and $\mathbf{- 1}$ negative marking for incorrect answer.

GENERAL INSTRUCTIONS:

- For answering a question, an ANSWER SHEET (OMR SHEET) is provided separately. Please fill your Name, Roll Number, Seat ID, Date of Birth and the PAPER CODE properly in the space provided in the ANSWER SHEET. IT IS YOUR OWN RESPONSIBILITY TO FILL THE OMR SHEET CORRECTLY.
- A blank space has been provided on each page for rough work. You will not be provided with any supplement or rough sheet.
- The use of log tables, calculator and any other electronic device is strictly prohibited.
- Violating the examination room discipline will immediately lead to the cancellation of your paper and no excuses will be entertained.
- No one will be permitted to leave the examination hall before the end of the test.
- Please submit both the question paper and the answer sheet to the invigilator before leaving the examination hall.

PART - I (PHYSICS)

1. A stone is dropped from the top of a 30 m high cliff. At the same instant another stone is projected vertically upwards from the ground with a speed of $30 \mathrm{~m} / \mathrm{s}$. The two stones will cross each other after a time: $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
(A) 1 s
(B) 2 s
(C) 3 s
(D) 4 s
2. A train accelerates from rest for time t_{1} at a constant rate α and then it retards at the constant rate β for time t_{2} and come to rest. The ratio of t_{1} / t_{2} is equal to:
(A) α / β
(B) $\quad \beta / \alpha$
(C) α^{2} / β^{2}
(D) $\quad \beta^{2} / \alpha^{2}$
3. An experiment measured quantities a, b, c and then x is calculated from $x=a b^{2} / c^{3}$. If the percentage errors in $\mathrm{a}, \mathrm{b} \& \mathrm{c}$ are $\pm 1 \%, \pm 3 \%$ and $\pm 2 \%$ respectively, the percentage error in x can be:
(A) $\pm 13 \%$
(B) $\pm 7 \%$
(C) $\pm 4 \%$
(D) $\pm 1 \%$
4. Two non zero vectors \vec{A} and \vec{B} are such that $|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$. The angle between them is:
(A)
0°
(B) 60°
(C) 90°
(D) 180°
5. A body of mass 2 kg , moving on a horizontal surface with an initial velocity of $4 \mathrm{~m} / \mathrm{s}$, comes to rest after 2 seconds. If one wants to keep this body moving on the same surface with a velocity of $4 \mathrm{~m} / \mathrm{s}$, the force required is:
(A) zero
(B) $\quad 2 \mathrm{~N}$
(C) 4 N
(D) 8 N
6. Two masses of 10 kg and 20 kg are connected by a massless spring as shown. A force of 200 N acts on the 20 kg mass. At a certain instant the acceleration of 10 kg mass is $12 \mathrm{~m} / \mathrm{s}^{2}$. The acceleration of the 20 kg mass at that instant is:
(A)
$4 \mathrm{~m} / \mathrm{s}^{2}$
(B) $10 \mathrm{~m} / \mathrm{s}^{2}$
(C)
$12 \mathrm{~m} / \mathrm{s}^{2}$
(D) none of these.

7. A force of $(5+3 x) N$, acting on a body of mass 20 kg along the x-axis, displaces it from $x=2 \mathrm{~m}$ to $\mathrm{x}=6 \mathrm{~m}$. The work done by the force is:
(A) 20 J
(B) $E 48 \mathrm{~J}$
(C) 68 J
(D) 86 J
8. Two racing cars of masses m_{1} and m_{2} are moving in circles of radii r_{1} and r_{2} respectively. Their speeds are such that each makes a complete circle in the same length of time. The ratio of the angular speed of the first car to that of the second car is:
(A) $\quad \mathrm{m}_{1}: \mathrm{m}_{2}$
(B) $\mathrm{r}_{1}: \mathrm{r}_{2}$
(C) $1: 1$
(D) $\quad \mathrm{m}_{1} \mathrm{r}_{1}: \mathrm{m}_{2} \mathrm{r}_{2}$
9. A solid sphere of mass 1 kg and radius 3 cm is rotating about an axis passing through its centre with an angular velocity of $50 \mathrm{rad} / \mathrm{s}$. The kinetic energy of rotation is:
(A)
9/20 J
(B) 90 J
(C) 910 J
(D) 4500 J
10. A flywheel is in the form of a uniform circular disc of radius 1 m and mass 2 kg . The work which must be done on it to increase its frequency of rotation from 5 to $10 \mathrm{rev} / \mathrm{s}$ is approximately:
(A)
$1.5 \times 10^{2} \mathrm{~J}$
(B) $3.0 \times 10^{2} \mathrm{~J}$
(C) $1.5 \times 10^{3} \mathrm{~J}$
(D) $3.0 \times 10^{3} \mathrm{~J}$
11. The value of acceleration due to gravity on the surface of the earth is g. If the diameter of the earth becomes double of its present value and its mass remains unchanged, the value of acceleration due to gravity on the surface of the earth would become:
(A)
$\mathrm{g} / 2$
(B) $\mathrm{g} / 4$
(C) 2 g
(D) 4 g
12. Imagine a light planet revolving around a very massive star in a circular orbit of radius R with period T. If the gravitational force of attraction between the planet and the star is proportional to $\mathrm{R}^{-5 / 2}$, then T^{2} is proportional to:
(A) R^{3}
(B) $\quad \mathrm{R}^{7 / 2}$
(C) $\mathrm{R}^{3 / 2}$
(D) $\quad \mathrm{R}^{3.75}$
13. Two wires of the same material have diameters in the ratio $2: 1$ and lengths in the ratio $1: 2$. If they are stretched by the same force, their elongations will be in the ratio:
(A) $8: 1$
(B) $1: 8$
(C) $2: 1$
(D) $1: 4$
14. A mercury drop of radius 1 cm is sprayed into 10^{6} drop of equal size. If the surface tension of mercury is $35 \times 10^{-3} \mathrm{~N} / \mathrm{m}$. the energy expended is
(A)
$4.35 \times 10^{-3} \mathrm{~J}$
(B) $8.7 \times 10^{-3} \mathrm{~J}$
(C) $4.35 \times 10^{-2} \mathrm{~J}$
(D) $8.7 \times 10^{-2} \mathrm{~J}$
15. A lead bullet strikes a steel armour plate with a velocity of $300 \mathrm{~m} / \mathrm{s}$ and is completely stopped. If the heat produced is shared equally between the bullet and the target, the rise in the temperature of the bullet is (specific heat of lead $0.03 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$)
(A)
$89.3^{\circ} \mathrm{C}$
(B) $49.3^{\circ} \mathrm{C}$
(C) $178.6^{\circ} \mathrm{C}$
(D) $\quad 357.2^{\circ} \mathrm{C}$
16. Oxygen and hydrogen gases are at the same temperature. The ratio of the average kinetic energy of an oxygen molecule and that of a hydrogen molecule is:
(A)
16
(B) 4
(C)
(D) $\quad 1 / 4$
17. An ideal gas is taken around the cycle $A B C A$ as shown in the $P V$ diagram. The net work done by the gas during the cycle is:
(A)
12 PV
(B) 6 PV
(C)
3 PV
(D) PV

18. A piston of cross-sectional area $100 \mathrm{~cm}^{2}$ is used in a hydraulic press to exert a force of 10^{7} dynes on the water. The cross-sectional area of the other piston which supports a truck of mass 2000 kg is:
(A)
$9.8 \times 10^{2} \mathrm{~cm}^{2}$
(B) $9.8 \times 10^{3} \mathrm{~cm}^{2}$
(C) $\quad 1.96 \times 10^{3} \mathrm{~cm}^{2}$
(D) $1.96 \times 10^{4} \mathrm{~cm}^{2}$
19. The weight of a body in air is 100 N . How much will it weigh in water, if it displaces 400 cc of water?
(A) $\quad 90 \mathrm{~N}$
(B) $\quad 94 \mathrm{~N}$
(C) 98 N
(D) none of these.
20. A body falling freely on a planet covers 8 m in 2 s . The time period of a one metre long simple pendulum on this planet will be:
(A)
1.57 s
(B) 3.14 s
(C) $\quad 6.28 \mathrm{~s}$
(D) none of these.
21. The vertical extension in a light spring by a weight of 1 kg , in equilibrium, is 9.8 cm . The period of oscillation of the spring, in seconds, will be:
(A) $2 \pi / 10$
(B) $2 \pi / 100$
(C) 20π
(D) 200π
22. A progressive wave of frequency 500 Hz is travelling with a speed of $350 \mathrm{~m} / \mathrm{s}$. A compressional maximum appears at a place at a given instant. The minimum time interval after which a rarefaction maximum occurs at the same point is:
(A) $\quad 1 / 250 \mathrm{~s}$
(B) 500 s
(C) $\quad 1 / 1000 \mathrm{~s}$
(D) $1 / 350 \mathrm{~s}$
23. A stretched string of length 2 m vibrates in 4 segments. The distance between consecutive nodes is:
(A) $\quad 0.5 \mathrm{~m}$
(B) 0.25 m
(C) 1.0 m
(D) 0.75 m
24. An aeroplane is flying horizontally with a velocity of $600 \mathrm{~km} / \mathrm{h}$ at a height of 1960 m . When it is vertically at a point A on the ground, a bomb is released from it. The bomb strikes the ground at point B. The distance $A B$ is:
(A) 1200 m
(B) $\quad 0.33 \mathrm{~km}$
(C) 3.33 km
(D) 33 km
25. The range of a particle when launched at an angle of 15° with the horizontal is 1.5 km . What is the range of the projectile when launched at an angle of 45° to the horizontal:
(A) $\quad 1.5 \mathrm{~km}$
(B) 3.0 km
(C) 6.0 km
(D) 0.75 km
26. On heating a liquid of coefficient of cubical expansion α in a container having coefficient of linear expansion $\alpha / 3$, the level of liquid in the container will:
(A) rise
(B) fall
(C) remain almost the same.
(D) rise or fall depending on the density of the liquid.
27. A black body at $227^{\circ} \mathrm{C}$ radiates heat at the rate of $5 \mathrm{cal} / \mathrm{cm}^{2} / \mathrm{s}$. The rate of heat radiated in $\mathrm{cal} / \mathrm{cm}^{2} / \mathrm{s}$ at $727^{\circ} \mathrm{C}$ is:
(A)
40
(B) 80
(C) 160
(D) 240
28. Ship A is traveling with a velocity of $5 \mathrm{~km} / \mathrm{h}$ due east. A second ship is heading 30° east of north. What should be the speed of second ship if it is to remain always due north with respect of the first ship?
(A) $10 \mathrm{~km} / \mathrm{h}$
(B) $9 \mathrm{~km} / \mathrm{h}$
(C) $8 \mathrm{~km} / \mathrm{h}$
(D) $7 \mathrm{~km} / \mathrm{h}$
29. A certain force applied to mass m_{1} gives it an acceleration of $10 \mathrm{~m} / \mathrm{s}^{2}$. The same force applied to mass m_{2} gives it an acceleration of $15 \mathrm{~m} / \mathrm{s}^{2}$. If the two masses are joined together and the same force is applied to the combination, the acceleration will be:
(A) $6 \mathrm{~m} / \mathrm{s}^{2}$
(B) $3 \mathrm{~m} / \mathrm{s}^{2}$
(C) $9 \mathrm{~m} / \mathrm{s}^{2}$
(D) $12 \mathrm{~m} / \mathrm{s}^{2}$
30. The moment of inertia of a ring about an axis passing through its centre and perpendicular to its plane is $200 \mathrm{~g}-\mathrm{cm}^{2}$. Its moment of inertia about a diameter is:
(A) $100 \mathrm{~g}-\mathrm{cm}^{2}$
(B) $200 \mathrm{~g}-\mathrm{cm}^{2}$
(C) $300 \mathrm{~g}-\mathrm{cm}^{2}$
(D) $400 \mathrm{~g}-\mathrm{cm}^{2}$

PART - II (CHEMISTRY)

31. Total number of protons in $10 \mathrm{~g} \mathrm{CaCO}_{3}$ are:
(A) $\quad 4.011 \times 10^{24}$
(B) 1.0478×10^{24}
(C) 3.0115×10^{24}
(D) 7×10^{24}
32. Volume of NH_{3} (at NTP) required to bring down the normality of 30 cc ., $1 \mathrm{~N} \quad \mathrm{H}_{2} \mathrm{SO}_{4}$ to 0.2 N will be
(A) 1 litre
(B) 0.62 litre
(C) 0.54 litre
(D) 1.91 litre
33. The total number of spectral lines emitted during the transition of an electron from 5 th shell to 2 nd shell are:
(A) 11
(B) 12
(C) 8
(D) 6
34. Maximum covalency of N and B respectively are
(A) 5,3
(B) 3,1
(C) 3,3
(D) 4,4
35. If a system absorbs 1 kJ heat at constant pressure of 1 atm , the system volume changes from 3 litre to 10 litre. The change in internal energy will be
(A) 993 kJ
(B) 4 kJ
(C) -6 kJ
(D) $\quad 0.29 \mathrm{~kJ}$
36. The pH of a buffer containing 2 M acetic acid and 2 M sodium acetate will be $\left(\mathrm{K}_{\mathrm{a}}\right.$ for $\left.\mathrm{CH}_{3} \mathrm{COOH}=1.8 \times 10^{-5}\right)$
(A) 3.74
(B) 5.04
(C) 4.74
(D) 5.26
37. Which of the following carbocations is the least stable?
(A)
$\mathrm{C}_{6} \mathrm{H}_{5} \stackrel{+}{\mathrm{C}} \mathrm{H}_{2}$
(B) $\quad \mathrm{p}-\mathrm{O}_{2} \mathrm{~N}-\mathrm{C}_{6} \mathrm{H}_{4}-\stackrel{+}{\mathrm{C}} \mathrm{H}_{2} 986$
(C)

(D) $\quad \mathrm{p}=\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}-\stackrel{+}{\mathrm{C}} \mathrm{H}_{2}$
38. Which of these is aromatic?
(A) Cyclopentadienyl cation
(B) Cycloheptadienyl cation
(C) Cyclopentadienyl anion
(D) All of these
39. The compound that does not answer the Lassaigne's Test is
(A) Aniline
(B)
Glycine
(C) Hydrazine
(D) Urea
40. Isopentane can form 4 monobromo isomeric derivatives. How many of them are optically active?
(A) 1
(B) 2
(C) 3
(D) None of these
41. Hydrogen gas can be manufactured by
(A) Bosch process
(B) Lane's process
(C) Electrolysis of water
(D) All of these
42. What fraction of molecular weight, would be the equivalent weight of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$?
(A) $\frac{1}{2}$
(B) $\frac{1}{6}$
(C) $\frac{1}{3}$
(D) $\frac{1}{4}$
43. The total number of angular nodes in the $3 p$ orbital are:
(A) 0
(B) 1
(C) 2
(D) 3
44. The outer most electronic configuration of an element is $[\mathrm{Ar}] 3 \mathrm{~d}^{7} 4 \mathrm{~s}^{2}$. The atomic number of an element lying just below this element in its group will be
(A) 40
(B) 45
(C) 49
(D) 54
45. The hybridization of Xe in $\mathrm{XeO}_{2} \mathrm{~F}_{2}$ is
(A) sp^{3}
(B) $\mathrm{sp}^{3} \mathrm{~d}$
(C) $\mathrm{sp}^{3} \mathrm{~d}^{3}$
(D) $\quad \mathrm{sp}^{3} \mathrm{~d}^{2}$
46. Which of the following is diamagnetic?
(A) O_{2}
(B) O_{2}^{+}
(C) O_{2}^{-}
(D) $\quad \mathrm{O}_{2}{ }^{2-}$
47. The time taken for a certain volume of gas (x) to diffuse through a small hole is 2 minutes. It takes 5.65 minutes for same volume of oxygen to diffuse under similar conditions. The molecular weight of gas (x) is
(A) 8
(B) 4
(C) 16
(D) 32
48. The initial pressure of PCl_{5} present in a 1 litre vessel at 200 K is 2 atm . At equilibrium the pressure increases to 3 atm with temperature increasing to 250 K . The percentage dissociation of PCl_{5} at equilibrium is
(A) 0.2%
(B) 15%
(C) 20%
(D) 70%
49. Which of these has the minimum (-I) effect?
(A) $\quad-\stackrel{+}{N} R_{3}$
(B) $\quad-\stackrel{+}{\mathrm{S}} \mathrm{R}_{2}$
(C) $-\stackrel{+}{\mathrm{N}} \mathrm{H}_{3}$
(D) -COOH
50. In the estimation of nitrogen by the Duma's method, 0.59 gram of an organic compound gave 112 ml of nitrogen at NTP. The percentage of N in the compound will be
(A)
23.7
(B) 11.8
(C) 20
(D) 47.5
51. Alkali metals when dissolve in liquid NH_{3} may from
(A) Blue colour solutions
(B) Bronze colour solutions
(C)
Both (A) and (B)
(D) None of these
52. The acid having the highest pK_{a} value among the following is
(A)
HCOOH
(B) $\quad \mathrm{CH}_{3} \mathrm{COOH}$
(C) $\mathrm{ClCH}_{2} \mathrm{COOH}$
(D) $\quad \mathrm{FCH}_{2} \mathrm{COOH}$
53. The essential condition for the feasibility of a reaction is that
(A) the reaction should be exothermic
(B) the entropy of products must be larger than that of reactants
(C) the reaction is to be accompanied with free energy decrease
(D) the reaction has to possess high activation energy
54. If $100 \mathrm{ml} 0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ and $200 \mathrm{ml} 0.1 \mathrm{M} \mathrm{HNO}_{3}$ are mixed together and final volume made up to 500 ml then normality of the resultant mixture will be
(A)
0.02
(B) 0.04
(C) 0.08
(D) 0.06
55. In the thermal dissociation of PCl_{5}, the total pressure of gases at equilibrium is 1.0 atmosphere when 50% of PCl_{5} is found to dissociate. The equilibrium constant of the reaction $\left(\mathrm{K}_{\mathrm{p}}\right)$ in atmosphere is
(A)
0.25
(B) 0.33
(C) 1.00
(D) 0.5
56. When a piece of copper wire is immersed in a solution of aqueous silver nitrate, the solution becomes blue. This is a consequence of
(A) oxidation of silver
(B) oxidation of copper
(C) formation of a copper complex
(D) reduction of copper
57. The density of neon will be highest at
(A) STP
(B) $\quad 0^{\circ} \mathrm{C}, 2$ atmosphere
(C) $273^{\circ} \mathrm{C}, 1$ atmosphere
(D) $273^{\circ} \mathrm{C}, 2$ atmosphere
58. The smallest ion among the following is
(A) $\quad \mathrm{Na}^{+}$
(B) Al^{+3}
(C) Mg^{+2}
(D) Si^{+4}
59. An element in +3 oxidation state has the electronic configuration $[\mathrm{Ar}] 3 \mathrm{~d}^{3}$. Its atomic number is
(A) 24
(B) 23
(C) 22
(D) 21
60. The amount of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ (Equivalent Mass $=49.04 \mathrm{~g}$) required to prepare 100 ml of its 0.05 N solution is
(A)
2.9424 g
(B) $\quad 0.4904 \mathrm{~g}$
(C) $\quad 1.4712 \mathrm{~g}$
(D) $\quad 0.2452 \mathrm{~g}$

PART - III (BIOLOGY)

61. According to ICBN the name of the class ends with suffix:
(A) -phyceae
(B) -opsida
(C)
-ae s(D)
Both (A) and (B)
62. In the hierarchial classification, the number of obligate taxonomic categories is:
(A)
7
(B)
(C)
(D) 12
63. Virus envelope is known as:
(A)
Capsid
(B)
(C) Nucleoprotein
(D) Core
64. The most abundant prokaryotes helpful to humans in making curd from milk and in production of antiobiotics are the one categorised as:
(A) Chemosynthetic autotrophs
(B) Heterotrophic bacteria
(C) Cyanobacteria
(D) Archaebacteria
65. Which of the following are likely to be present in deep sea water?
(A) Eubacteria
(B) Blue-green algae
(C) Saprophytic fungi
(D) Archaebacteria
66. Cyanobacteria differs from bacteria in many respects in
(1) Complete absence of flagella
(2) Presence of both PS I, PS II
(3) Photosynthesis is anoxygenic
(4) Carotene and Chlorophylls are present
(A)
1,2, 3 are correct
(B) 2, 3 are correct
(C)
2, 3, 4 are correct
(D) 1, 2, 4 are correct
67. Phycocolloid algin occurs in
(A) Cytoplasm of red algae
(B) Cell well of brown algae
(C) Cell wall of red algae
(D) Cytoplasm of brown algae
68. In Chlamydomonas, meiosis occurs in
(A) Gamete
(B) Zygote
(C) Sporogonium
(D) Zoospore
69. A prothallus is
(A) A structure in pteridophytes formed before the thallus develops
(B) A sporophytic free living structure formed in some pteridophytes
(C) A gametophytic free living structure formed in some pteridophytes
(D) A primitive structure formed after fertilization in some pteridophytes.
70. Select an incorrect statement.
(A) In majority of the dicotyledonous plants, the direct elongation of the radicle leads to the formation of primary root.
(B) Tap root system is seen in the mustard plant.
(C) In some plants, like grass and banyan tree, adventitious roots are not found.
(D) In monocotyledonous plants, the primary root is short lived.
71. Given below are the pairs of plants with sub-aerial stems. Find the dissimilar pair w.r.t. the modification.
(A) Mint, Jasmine
(B) Pistia, Eichhornia
(C) Banana, Grass
(D) Both $(\mathbf{A}) \&(B)$
72. In how many of given plants, single leaf arises from each node? CINCE 1986 Alstonia, Mustard, China rose, Guava, Tomato, Chilli, Calotropis, Sunflower, Nerium, Petunia
(A)
Six
(B) Seven
(C) Five
(D) Eight
73. Which type of inflorescence is shown below?
(A) Racemose
(B) Cymose
(C) Cyathium
(D) Hypanthodium

74. A meristem may be defined as the group of cells which
(A) Does not divide
(B) Conserve food
(C) Divide continuously to give rise to new cells
(D) Elongate,mature and add to the group of cells
75. Parenchymatous tissue is the seat of
(A) Photosynthesis
(B) Storage of food materials
(C) Secretion and excretion
(D) All of the above
76. Layer of cells between endodermis and vascular bundles is called
(A) Epidermis
(B) Pericycle
(C) Hypodermis
(D) Pith
77. In dicot stem, the secondary growth takes place by:
(A) Primary cambium
(B) Secondary cambium
(C) Development of cambium in stele region
(D) Development of cambium in stele and in the cortical region
78. Which of the following is not a role of water?
(A) Essential for all physiological activities of plants.
(B) Acts as an poor solvent
(C) Helps in the uptake and distribution of mineral nutrients and other solutes required for growth and development.
(D) Plays a key role in photosynthesis and acts as a source of oxygen.
79. Select incorrect statement for diffusion?
(A) Larger the difference in concentration, slower is the flow of molecules.
(B) Diffusion is more rapid in gases than in liquids
(C) When there is no net movement of molecules, a state of equilibrium is reached
(D) Diffusion is a random movement of molecules
80. The inner wall of each guard cell, towards the pore or stomatal aperture, is:
(A) Thick and elastic
(B) Thin and elastic
(C) Thin and inelastic
(D) Thick and inelastic
81. Most minerals must enter the root by active absorption because: SNCE1986
(A) minerals are present in the soil as charged particles which cannot move across cell membranes
(B) the concentration of minerals in the soil is usually lower than the concentration of minerals in the root
(C) This needs energy in the form of ATP
(D) All of these
82. Mineral ions in plants are:
(A) Never remobilised
(B) Frequently remobilised
(C) Always remobilised
(D) Remobilised in the form of inorganic ions
83. Nickel is an essential part of which of the following enzymes:
(A) Urease
(B) Nitrogenase
(C) Nitrate reductase
(D) PEP carboxylase
84. During active intake of minerals in first phase:
(A) An initial rapid uptake of ions into the free space occurs
(B) The ions are taken slowly into the inner space
(C) The ions are taken rapidly into the inner space
(D) The ions are taken slowly into the outer space
85. The following processes occur during photosynthesis:
(I) Reduction of carbon dioxide
(II) The splitting of water
(III) The synthesis of glucose
(IV) Formation of oxygen gas
(V) Formation of ATP

Which one of the following combinations is correct for the light phase?
(A) I, II and III
(B) III, IV and V
(C) I, III and IV
(D) II, IV and V
86. Stroma lamellae are characterised by all, except
(A) Presence of PS-I
(B) Site of cyclic photophosphorylation
(C) Perform photosynthesis at wavelength $>680 \mathrm{~nm}$
(D) Presence of NADP^{+}reductase
87. First carbohydrate formed in dark reaction is:
(A) PGAL
(B) DHAP
(C) Erythrose $4 \mathrm{PO}_{4}$
(D) Xylulose $5 \mathrm{PO}_{4}$
88. Protein is mostly the respiratory substrate in:
(A) Protoplasmic respiration
(B) Floating respiration
(C) Anaerobic respiration
(D) Respiration of oily seeds
89. Glycolysis is also called
(A) EMP Pathway
(B) Amphibolic pathway
(C) Triosis
(D) Both (A) and (C)
90. How many multiprotein complexes occurs in ETC in mitochondria?
(A)
(B) 3
(C). 5
(D) N_{2}
91. The main organelle involved in modification and routing of newly synthesized proteins to their destination is:
(A) Mitochondria
(B) Endoplasmic reticulum
(C) Lysosome
(D) E Ribosomes
92. The central part of the proximal region of the \qquad is proteinaceous and called "hub" which is connected with tubules of the peripheral triplets by radial spokes:
(A) Centromere
(B) Nucleolus
(C) Centrosome
(D) Centriole
93. State these names at specific places - Interdoublet bridge, central sheath and Radial spoke respectively:
(A) (V), (IV) and (VI)
(B) (II), (VI) and (V)
(C) (II), (III) and (V)
(D) (III), (VI) and (V)

94. The endomembranous system includes:
(A) ER, GB, lysosome and vacuoles
(B) ER, GB, centrioles and lysosome
(C) Mitochondria, chloroplast and peroxisomes
(D) ER, GB, Mitochondria, chloroplast
95. The movement of chromatids towards the opposite poles brought about by dissolution of microtubules of chromosomal fibers attached to the centromere in:
(A) Prophase
(B) Metaphase
(C) Anaphase
(D) Telophase
96. Chromosomes cluster at opposite spindle poles and their identity is lost as discrete elements in
(A) Anaphase
(B) Anaphase II
(C) Telophase
(D) both (A) and (B)
97. Fill in the blank A \& B in the given statement:
\qquad is the most abundant protein in animal world and \qquad II \qquad is the most abundant protein in the whole of the biosphere.
$\begin{array}{cc} & \text { I } \\ \text { (A) } & \text { RUBISCO }\end{array}$
II
I
II
(C)
(C) Fibrin
Collagen
(B) Collagen
Elastin
Collagen
(D) Collagen
RUBISCO
98. The statement which is not correct amongst the following is:
(A) Starch is a homopolymer of glucose containing amylose and amylopectin.
(B) Maltose is a disaccharide formed from two glucose units.
(C) Cellulose is a trisaccharide formed from 3 units of glucose.
(D) Inulin is a polymer of fructose.
99. Arrange the steps of the catalytic cycle of an enzyme action in the correct descending order:

1. Active site of the enzyme breaks the chemical bonds of the substrate.
2. The enzyme shape is altered.
3. The substrate fits into the active site of the enzyme.
4. Enzyme molecule releases the product and is freed to bind another molecule of the substrate.
(A) 4-1-3-2
(B) 4-1-2-3
(C) 4-3-1-2
(D) 4-2-1-3
5. Which of the following animal groups is entirely aquatic?
(A) Mollusca and Cnidaria
(B) Ctenophora and Mollusca
(C) Echinodermata and Ctenophora
(D) Annelida and Echinodermata
6. The figure given below shows the alimentary canal of an animal. Select the option which shows the correct identification of the structure which is also called proventriculus and helps in grinding the food particles:
(A) 1
(B) 2
(C) 3
(D) 4

7. Characteristics of smooth muscle fibres are
(A) Spindle-shaped, unbranched, unstriated, uninucleate and involuntary
(B) Spindle-shaped, unbranched, unstriped, multinucleate and involuntary
(C) Cylindrical, unbranched, unstriped, multinucleate and involuntary
(D) Cylindrical, unbranched, striated, multinucleate and voluntary
8. The enzyme enterokinase:
(A) Stimulates release of pancreatic secretions
(B) Activates protein digesting enzymes
(C) Functions in lipid digestion
(D) Functions in carbohydrates digestion
9. One of the following is not an enzyme of digestive system:
(A) Trypsin
(B) Amylase
(C) Enterogastrone (D) Enterokinase
10. Functions of the stomach include all of the following, except:
(A) Churning of ingested food
(B) Denaturation of proteins
(C) Initiation of protein digestion
(D) Absorption of proteins
11. What common feature between human trachea \& cockroach trachea is observed?
(A) Both are paired and unbranched
(B) Both are supported by cartilaginous rings
(C) Both are non collapsible
(D) Both originate from Pharynx
12. Match the items in column I with column II and choose the correct option: $N C E 1986$

	Column I		Column II
(i)	Tidal volume	(p)	$2500-3000 \mathrm{ml}$
(ii)	Residual volume	(q)	500 ml
(iii)	IRV	(r)	$1100-1200 \mathrm{ml}$
(iv)	ERV	(s)	$1000-1100 \mathrm{ml}$

(A)
(i) -q, (ii) -s , (iii) -p , (iv) -r
(B) \quad (i) -q, (ii) -p, (iii) -r , (iv) -s
(C)
(i) $-s$, (ii) $-p$, (iii) $-r$, (iv) $-q$
(D) (i) -q, (ii) -r , (iii) -p, (iv) -s
108. Mark the correct statement for human blood?
(1) All the WBCs are nucleated in blood vessels
(2) All the RBCs are enucleated in blood vessels
(3) Rh-antigen is present on the surface of every RBC
(4) Antibodies are present in the blood plasma
(A)
1, 2, 3, 4
(B) 2,4 only
(C) $1,2,4$
(D) 1,2 only
109. In the given diagram of ECG, T-wave represents:
(A) Electrical excitation of atria and systole of ventricle.
(B) Depolarization of ventricle and repolarization of atria.
(C) Return of the ventricles from excited to normal state and end of ventricular systole.

(D) The beginning of ventricular systole.
110. All of them are characters of reptiles, except:
(A) Lizards shed their scales as skin cast
(B) Scutes are present on their body
(C) Heart is three-chambered in all reptiles
(D) They are poikilotherms
111. Match column I with column II

Column I

(i) PCT

Column II

(p) Reabsorption of urea
(q) Reabsorption of maximum electrolytes
(r) Minimum reabsorption
(s) Conditional reabsorption
(A) (i)-q, (ii)-p, (iii) -s, (iv)-r
(B) (i) -p , (ii) -r , (iii) -s , (iv) -q
(C) A-q, B-s, C-r, D-p
(D) A-r, B-s, C-p, D-q
112. Which of the following forms thoracic cage of man?
(A) Ribs and sternum
(B) Ribs and thoracic vertebrae
(C) Ribs, sternum and lumbar vertebrae
(D) Ribs, sternum and thoracic vertebrae
113. During the contraction of a vertebrate skeletal muscle fibre, calcium ions:
(A) break cross bridges by acting as a cofactor in the hydrolysis of ATP
(B) bind with troponin, changing its shape so that myosin-binding sites on actin are exposed
(C) transmit action potentials from the motor neuron to muscle fibres
(D) re-establish the polarization of plasma membrane following an action potential
114. Which of the following statements is/ are incorrect about Periplaneta americana? 986
I. They are nocturnal omnivores that live in the damp places.
II. Its body is segmented and divisible in two regions i.e. head and abdomen.
III. Antennae have sensory receptors to monitor the environment.
IV. Head can move in all directions due to the presence of flexible neck.

The correction option is
(A) I and IV
(B) Only II (C)
Only IV
(D) II and III
115. The canal passing through the midbrain is called:
(A) Medulla oblongata
(B) Cerebral aqueduct
(C) Eustachian tube
(D) Aqueous chamber
116. Eye lens is held in the place by:
(A) Muscle fibres of iris
(B) Ligaments attached to the ciliary body
(C) A transparent gel called vitreous humor
(D) Thin watery fluid called aqueous humor
117. Which of the following is the function of ear ossicles?
(A) To collect the vibrations in the air
(B) To equalise the pressures on either sides of the ear drum
(C) To secrete ear wax
(D) To increase the efficiency of transmission of sound waves to the inner ear
118. The ductless glands:
(A) Produce non-nutrient intercellular messengers
(B) Found only in non chordates
(C) Are absent in human body
(D) Are called exocrine glands
119. The two glands located in the neck region are:
(A) Thyroid gland and parathyroid gland
(B) Pituitary gland and pineal gland
(C) Adrenal gland and thymus
(D) Pineal gland and thyroid gland
120. Hypothalamus forms an important link between:
(A) Digestive system and nervous system
(B) Nervous system and respiratory system
(C) Nervous system and endocrine system
(D) Integumentary system and reproductive system

9^{∞} End of Sample Paper | 1 Year Medical | Paper I $\propto \infty$

IIT JEE | MEDICAL | FOUNDATION

Answers to Sample Paper | 1 Year Medical

Sample Paper - I

Sample Paper - 1 Year Program

Admission \& Scholarship Test | Medical

PAPER SCHEME :

- The paper contains 120 Objective Type Questions divided into three sections: Section - I (Physics), Section - II (Chemistry) and Section - III (Biology).
- Section I and II contain 30 Multiple Choice Questions each and Section III contains 60 questions. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE CHOICE is correct.

MARKING SCHEME :

- For each question in Section-I, II and III, $\mathbf{4}$ marks will be awarded for correct answer and $\mathbf{- 1}$ negative marking for incorrect answer.

GENERAL INSTRUCTIONS:

- For answering a question, an ANSWER SHEET (OMR SHEET) is provided separately. Please fill your Name, Roll Number, Seat ID, Date of Birth and the PAPER CODE properly in the space provided in the ANSWER SHEET. IT IS YOUR OWN RESPONSIBILITY TO FILL THE OMR SHEET CORRECTLY.
- A blank space has been provided on each page for rough work. You will not be provided with any supplement or rough sheet.
- The use of log tables, calculator and any other electronic device is strictly prohibited.
- Violating the examination room discipline will immediately lead to the cancellation of your paper and no excuses will be entertained.
- No one will be permitted to leave the examination hall before the end of the test.
- Please submit both the question paper and the answer sheet to the invigilator before leaving the examination hall.

PART - I (PHYSICS)

1. A stone falls from the top of tower in 8 s . How much time it will take to cover the first quarter of the distance starting from top?
(A) 4 s
(B) 2 s
(D) 1 s
(D) 5 s
2. A particle moving with constant acceleration covers distance of 30 m in $3^{\text {rd }}$ second. It covers a distance of 50 m in the $5^{\text {th }}$ second. What is the acceleration of the particle?
(A) $3 \mathrm{~m} / \mathrm{s}$
(B) $5 \mathrm{~m} / \mathrm{s}^{2}$
(D) $8 \mathrm{~m} / \mathrm{s}^{2}$
(D) $\quad 10 \mathrm{~m} / \mathrm{s}^{2}$
3. A body travels uniformly a distance of $(13.8 \pm 0.2) \mathrm{m}$ in a time $(4.0 \pm 0.3) \mathrm{s}$. The velocity of the body within error limits is:
(A) $\quad(3.45 \pm 0.2) \mathrm{ms}^{-1}$
(B) $\quad(3.45 \pm 0.3) \mathrm{ms}^{-1}$
(D) $\quad(3.45 \pm 0.4) \mathrm{ms}^{-1}$
(D) $\quad(3.45 \pm 0.5) \mathrm{ms}^{-1}$
4. Two forces have magnitudes in the ratio $3: 5$ and the angle between their directions is 60°. If their resultant is 35 N , their magnitudes are:
(A)
$12 \mathrm{~N}, 20 \mathrm{~N}$
(B) $15 \mathrm{~N}, 25 \mathrm{~N}$
(D) $\quad 18 \mathrm{~N}, 30 \mathrm{~N}$
(D) $\quad 21 \mathrm{~N}, 28 \mathrm{~N}$
5. The mass of an elevator is 4000 kg . When the tension in the supporting cable is 48000 N , the acceleration of the elevator is: $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
(A) $2 \mathrm{~m} / \mathrm{s}^{2}$ upwards
(B) $\quad 2 \mathrm{~m} / \mathrm{s}^{2}$ downwards 1^{986}
(D) $\quad 20 \mathrm{~m} / \mathrm{s}^{2}$ upwards
(D) $20 \mathrm{~m} / \mathrm{s}^{2}$ downwards
6. Two masses A and B of 10 kg and 5 kg respectively are connected with al string passing over a frictionless pulley fixed at the comer of a table as shown. The coefficient of static friction between A âd the table is 0.2 . The minimum mass C that should be placed on A to prevent it from
 moving is equal to:
(A) 12 kg
(B) 5 kg
(D) 10 kg
(D) 15 kg
7. A cord is used to lower vertically a block of mass M a distance d at a constant downward acceleration of $\mathrm{g} / 4$. Then the work done by the cord on block is:
(A)
$\operatorname{Mgd} / 4$
(B) $-\mathrm{Mgd} / 4$
(D) $3 \mathrm{Mgd} / 4$
(D) $\quad-3 \mathrm{Mgd} / 4$
8. On a dry road, the maximum permissible speed of a car in a circular path is $10 \mathrm{~m} / \mathrm{s}$. If the road becomes wet, the maximum speed is $5 \sqrt{ } 2 \mathrm{~m} / \mathrm{s}$. If the coefficient of friction for dry road is μ, then that for the wet road is:
(A)
$\mu / 2$
(B) $\mu / 3$
(D) $2 \mu / 3$
(D) $3 \mu / 4$
9. A uniform horizontal circular platform of mass 200 kg is rotating at 10 rpm about a vertical axis passing through its centre. A boy of mass 50 kg is standing at its edge. If the boy moves to the centre of the platform, the frequency of rotation would become:
(A)
7.5 rpm
(B) 12.5 rpm
(D) 15 rpm
(D) 20 rpm
10. The ratio of the time taken by a solid sphere and that taken by a disc of the same mass and radius to roll down a smooth inclined plane from rest from the same height is:
(A) $15: 14$
(B) $\sqrt{ } 15: \sqrt{ } 14$
(D) $14: 15$
(D) $\sqrt{ } 14: \sqrt{ } 15$
11. How much deep inside the earth (radius R) should a man go so that his weight becomes one-fourth of that on earth's surface:
(A) $\quad \mathrm{R} / 4$
(B) $\quad \mathrm{R} / 2$
(D) $3 R / 4$
(D) none of these
12. Two satellites are moving in the same circular orbit around earth. They must have same:
(A) mass
(B) angular momentum
(D) kinetic energy
(D) speed
13. A substance breaks down by a stress of $10^{6} \mathrm{~N} / \mathrm{m}^{2}$. If the density of the material of the wire is $3 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$, then the length of the wire of that substance which will break under its own weight when suspended vertically is:
(A) $\quad 3.4 \mathrm{~m}$
(B) 34 m
(D) 340 m
(D) None of these.
14. The force necessary to pull a circular plate of radius 5 cm from the surface of water (surface tension 75 dynes/cm) is:
(A) 30 dynes
(B) 60 dynes
(D) 750 dynes
(D) 750π dynes
15. The temperature at the bottom of a 40 m deep lake is $12^{\circ} \mathrm{C}$ and that at the surface is $35^{\circ} \mathrm{C}$. An air bubble of volume $1.0 \mathrm{~cm}^{3}$ rises from the bottom to the surface. Its volume becomes (atmospheric pressure $=10 \mathrm{~m}$ of water):
(A) $2.0 \mathrm{~cm}^{3}$
(B) $3.2 \mathrm{~cm}^{3}$
(D) $5.4 \mathrm{~cm}^{3}$
(D) $9868.0 \mathrm{~cm}^{3}$
16. The pressure of a gas contained in a closed vessel is increased by 0.4% when heated by $1^{\circ} \mathrm{C}$. The initial temperature was:
(A)
250 K
(B)
$250^{\circ} \mathrm{C}$
(D)
500 K
(D) $500^{\circ} \mathrm{C}$
17. When a gas expands adiabatically?
(A) no energy is required for expansion
(B) energy is required and it comes from the wall of the container of the gas
(D) internal energy of the gas is used in doing work
(D) law of conservation of energy does not hold.
18. The pressure in a water tap at the base of a building is 3×10^{6} dynes $/ \mathrm{cm}^{2}$ and on its top it is 1.6×10^{6} dynes $/ \mathrm{cm}^{2}$. The height of the building is approximately:
(A) 7 m
(B) 14 m
(D) 70 m
(D) 140 m
19. A solid weighs 5 N in air, 4 N in water and 4.5 N in some other liquid. The specific gravity of the liquid is:
(A) 0.5
(B) 1.5
(D) 0.9
(D) None of these
20. A simple harmonic oscillator has amplitude A and time period T. Its maximum speed is:
(A)
(B) $2 \mathrm{~A} / \mathrm{T}$
(D) $4 \pi \mathrm{~A} / \mathrm{T}$
(D) $2 \pi \mathrm{~A} / \mathrm{T}$
21. A mass M is suspended from a spring of negligible mass. The spring is pulled a little and then released so that it executes simple harmonic oscillations with period T . If the mass is increased by m , the period becomes $5 \mathrm{~T} / 4$. The ratio $(\mathrm{m} / \mathrm{M})$ is:
(A)
$4 / 5$
(B) $5 / 4$
(D) $9 / 16$
(D) $25 / 16$
22. Two sound waves, each of amplitude A and frequency ω, superpose at a point with a phase difference of $\pi / 2$. The amplitude and frequency of the resultant wave are, respectively:
(A)
$\mathrm{A} / \sqrt{ } 2, \omega / 2$
(B) $\quad \mathrm{A} / \sqrt{ } 2, \omega$
(D) $\quad \mathrm{A} \sqrt{ } 2, \omega / 2$
(D) $\quad \mathrm{A} \sqrt{ } 2, \omega$
23. A tuning fork of frequency 340 Hz is vibrated just above a cylindrical tube of length 120 cm . Water is slowly poured in the tube. If the speed of sound in air is $340 \mathrm{~m} / \mathrm{s}$, then the minimum height of water required for resonance is:
(A) 25 cm
(B) 45 cm
(D) 75 cm
(D) 95 cm
24. An aeroplane flying 490 m above ground level at $100 \mathrm{~m} / \mathrm{s}$, releases a block. How far on ground will it strike:
(A)
0.1 km
(B) 1 km
(D) 2 km
(D) None
25. For a projectile, the ratio of maximum height reached to the square of flight time is ($g=10 \mathrm{~ms}^{-2}$)
(D) $5: 4$
(D) $5: 2$
(D) $5: 1$
(D) $10: 1$
26. A second's pendulum gives correct time at $25^{\circ} \mathrm{C}$. The pendulum shaft is thin and is made of steel. How many seconds will it lose per day at $35^{\circ} \mathrm{C} ?\left(\alpha_{\text {steel }}=11 \times 10^{-6} /{ }^{\circ} \mathrm{C}\right)$
(A)
1.75 s
(B) 2.5 s
(D)
(D) $886^{4.75 \mathrm{~s}}$
27. A black body at a high temperature $T \mathrm{~K}$. radiates energy at the rate of $\mathrm{E} \mathrm{W} / \mathrm{m}^{2}$. When the temperature falls to $\mathrm{T} / 2 \mathrm{~K}$, the radiated energy in $\mathrm{W} / \mathrm{m}^{2}$ will be:
(A)
E/4
(B)
E/2
(D)
(D) $\mathrm{E} / 16$
28. A monkey is climbing a vertical tree with a velocity of $5 \mathrm{~m} / \mathrm{s}$ and a dog is running towards the tree with a velocity of $5 \sqrt{ } 3 \mathrm{~m} / \mathrm{s}$. The velocity of the dog relative to the monkey is:
(A) $10 \mathrm{~m} / \mathrm{s}$ at 30° with the horizontal
(B) $10 \mathrm{~m} / \mathrm{s}$ at 60° with the horizontal
(D) $\quad 8 \sqrt{ } 3 \mathrm{~m} / \mathrm{s}$ at 30° with the horizontal
(D) $\quad 8 \sqrt{3} \mathrm{~m} / \mathrm{s}$ at 60° with the horizontal
29. A block of mass 2 kg rests on a rough inclined plane making an angle of 30° with the horizontal. The coefficient of static friction between the block and the plane is 0.7 . The frictional force on block is:
(A) $\quad 9.8 \mathrm{~N}$
(B) $\quad 0.7 \times 9.8 \mathrm{~N}$
(D) $\quad 9.8 \times \sqrt{ } 3 \mathrm{~N}$
(D) $0.7 \times 9.8 \mathrm{x} \sqrt{3} \mathrm{~N}$
30. A rod of length 1 , hinged at the bottom, is held vertically and then allowed to fall. The linear velocity of its top when it hits the floor is
(A)
$(2 \mathrm{gl})^{1 / 2}$
(B) $\quad(2 \mathrm{~g} / \mathrm{l})^{1 / 2}$
(D) $\quad(3 \mathrm{gl})^{1 / 2}$
(D) $\quad(3 \mathrm{~g} / \mathrm{l})^{1 / 2}$

PART - II (CHEMISTRY)

31. Central atom of the following compound has one lone pair of electrons and three bond pairs of electrons
(A) $\quad \mathrm{H}_{2} \mathrm{~S}$
(B) $\quad \mathrm{AlCl}_{3}$
(C) NH_{3}
(D) $\quad \mathrm{BF}_{3}$
32. The rate of diffusion of methane at a given temperature is twice that of a gas X. The molecular weight of X is
(A)
(B) 32
(C) 8
(D) 64
33. Equal weights of CH_{4} and CO_{2} are mixed in an empty vessel at $25^{\circ} \mathrm{C}$. The fraction of the total pressure exerted by methane is
(A) $\frac{11}{15}$
(B) $\frac{15}{22}$
(C) $\frac{15}{11}$
(D) $\frac{22}{15}$
34. One gram of a metallic oxide upon reduction gives 0.68 g of metal. The equivalent of metal is
(A) 68
(B) 34
(C) 51
(D) 17
35. On combustion, carbon forms two oxides CO and CO_{2}. Heat of formation ofCO ${ }_{2}$ gas is 94.3 K cal and that of CO is 26.0 Kcal . Heat of combustion of carbon is
(A) $\quad 26.0 \mathrm{Kcal}$
(B) 94.3 Kcal
(C) 68.3 Kcal
(D) 120.3 Kcal
36. Structure of ammonia is
(A) pyramidal
(B) trigonal planar
(C) tetrahedral
(D) trigonal-bipyramidal
37. The hydrogen ion concentration of 0.1 N solution of $\mathrm{CH}_{3} \mathrm{COOH}$, which is 30% dissociated is
(A) 0.03
(B) 3.0
(C) 0.3
(D) 30.0
38. At NTP volume of oxygen evolved from 10 ml of a 20 volume solution of $\mathrm{H}_{2} \mathrm{O}_{2}$ is
(A) 20 ml
(B) 200 ml
(C) 100 ml
(D) $9^{86} 250 \mathrm{ml}$
39. An organic compound on analysis gave $\mathrm{C}=39.9 \%, \mathrm{H}=6.79 \%$ and $\mathrm{O}=53.4 \%$. The empirical formula of the compound is
(A)
CHO_{2}
(B)
$\mathrm{CH}_{2} \mathrm{O}$
(C)
(C) $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2}$
(D) CHO
40. When a liquid boils, there is:
(A) an increase in entropy
(B) a decrease in entropy
(C) an increase in heat of vapourization
(D) an increase in free energy
41. When acetylene is treated with HBr , we get
(A) Methyl bromide
(B) Ethylene bromide
(C) Ethyl bromide
(D) Ethylidine bromide
42. Which one of the following has the highest dipole moment?
(A) AsH_{3}
(B) SbH_{3}
(C) PH_{3}
(D) NH_{3}
43. The solubility products of $\mathrm{CuS}, \mathrm{Ag}_{2} \mathrm{~S}$ and HgS are $10^{-31}, 10^{-44}, 10^{-54}$, respectively. The solubility of these sulphides are in the order
(A) $\quad \mathrm{Ag}_{2} \mathrm{~S}>\mathrm{HgS}>\mathrm{CuS}$
(B) $\quad \mathrm{HgS}>\mathrm{Ag}_{2} \mathrm{~S}>\mathrm{CuS}$
(C) $\quad \mathrm{Ag}_{2} \mathrm{~S}>\mathrm{CuS}>\mathrm{HgS}$
(D) $\mathrm{CuS}>\mathrm{Ag}_{2} \mathrm{~S}>\mathrm{HgS}$
44. Reductive ozonolysis of \square using $\mathrm{Zn}+\mathrm{H}_{2} \mathrm{O}$ gives
(A) Butane-1, 4-dione
(B) Butane-1, 4-dial
(C) Butanoic acid
(D) Butane
45. The hydride ion H^{-}is stronger base than its hydroxide ion OH^{-}. Which of the following reactions will occur if sodium hydride (NaH) is dissolved in water?
(A) $\quad 2 \mathrm{H}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2}+2 \mathrm{e}^{-}$
(B) $\quad \mathrm{H}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{OH}^{-}+\mathrm{H}_{2}$
(C) $\quad \mathrm{H}^{-}+\mathrm{H}_{2} \mathrm{O} \longrightarrow$ No reaction
(D) $\quad \mathrm{Na}_{2} \mathrm{O}$ is formed
46. Which of these species is aromatic?
(A)

(B)

(C)

(D)

47. Carbogen is a mixture of:
(A)
O_{2} and CO_{2}
(B) O_{2} and CO
(C) CO and CO_{2}
(D) none of these
48. Which of these carbides is a methanide?
(A) $\quad \mathrm{Be}_{2} \mathrm{C}$
(B) CaC_{2}
(C) $\quad \mathrm{Mg}_{2} \mathrm{C}_{3}$
(D) $\quad \mathrm{Li}_{2} \mathrm{C}_{2}$
49. Which of the following does not exist in solid state?
(A) $\quad \mathrm{KHCO}_{3}$
(B) $\quad \mathrm{Ba}\left(\mathrm{HCO}_{3}\right)_{2}$
(C) $\quad \mathrm{NaHCO}_{3}$
(D) $\quad \mathrm{K}_{2} \mathrm{CO}_{3}$
50. The weight of a molecule of a compound $\mathrm{C}_{60} \mathrm{H}_{122}$ is
(A) 842 g
(C) $\quad 5.025 \times 10^{23} \mathrm{~g}$
(B)
(D) $\frac{1}{6.023 \times 10^{23}} g_{J} C E 1986$
51. The equivalent mass of NH_{3} in the reaction is
$\mathrm{N}_{2} \longrightarrow 2 \mathrm{NH}_{3}$
(A) $\frac{17}{3}$
(B)
$\frac{17}{6}$
(C) 17
(D) $\frac{17}{2}$
52. Aqueous solution of which of these oxychloride with same concentration has maximum pH ?
(A) $\quad \mathrm{NaClO}$
(B) $\quad \mathrm{NaClO}_{2}$
(C) $\quad \mathrm{NaClO}_{3}$
(D) $\quad \mathrm{NaClO}_{4}$
53. Number of electrons lost by $2 \mathrm{~g} \mathrm{Cl}^{-}$ion during its oxidation to Cl_{2} is
(A)
3.39×10^{22}
(B) $\quad 6.023 \times 10^{23}$
(C) 3.39×10^{23}
(D) $\quad 6.023 \times 10^{22}$
54. If N and S are present in an organic compound during Lassaigne test then both change into
(A) $\mathrm{Na}_{2} \mathrm{~S}$ and NaCN
(B) NaSCN
(C) $\quad \mathrm{Na}_{2} \mathrm{SO}_{3}$ and NaCN
(D) $\quad \mathrm{Na}_{2} \mathrm{~S}$ and NaCNO
55. What is the solubility of calcium fluoride in a saturated solution if its solubility product is 3.2×10^{-11} ?
(A) $2.0 \times 10^{-4} \mathrm{~mol} /$ litre
(B) $12.0 \times 10^{-3} \mathrm{~mol} /$ litre
(C) $\quad 0.2 \times 10^{-4} \mathrm{~mol} /$ litre
(D) $2 \times 10^{-3} \mathrm{~mol} /$ litre
56. The difference of water molecules in gypsum and plaster of paris is
(A) $\frac{5}{2}$
(B) 2
(C) $\frac{1}{2}$
(D) $1 \frac{1}{2}$
57. Identify the configuration of a transition metal out of these
(A)
$1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6}, 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6}, 4 \mathrm{~s}^{2}$
(B) $\quad 1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6}, 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{10}, 4 \mathrm{~s}^{2} 4 \mathrm{p}^{1}$
(C) $\quad 1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6}, 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{10}, 4 \mathrm{~s}^{2} 4 \mathrm{p}^{6}$
(D) $\quad 1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6}, 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{2}, 4 \mathrm{~s}^{2}$
58. Which sequence is correct regarding first ionization energy of Coinage metals?
(A) $\mathrm{Cu}>\mathrm{Ag}>\mathrm{Au}$
(B) $\mathrm{Cu}<\mathrm{Ag}<\mathrm{Au}$
(C) $\mathrm{Cu}>\mathrm{Ag}<\mathrm{Au}$
(D) $\mathrm{Ag}>\mathrm{Cu}<\mathrm{Au}$
59. Which of the following gains electrons most easily?
(A) $\quad \operatorname{Mg}(\mathrm{g})$
(B) $\quad \mathrm{Be}(\mathrm{g})$
(C) $\quad \mathrm{O}(\mathrm{g})$
(D) $\quad \mathrm{N}(\mathrm{g})$
60. In PO_{4}^{-3} ion, the formal charges on each oxygen atom and $\mathrm{P}-\mathrm{O}$ bond order respectively are
(A)
$-0.75,0.6$
(B) $\quad-0.75,1.0$
(C) $\quad-0.75,1.25$
(D) $\quad-3,1.25$

PART - III (BIOLOGY)

61. ICBN stand for:
(A) International classification of biological nomenclature
(B) International class of biological nomenclature
(C) International code of botanical nomenclature
(D) International classification of biological naming
62. 'Taxa' differs from 'taxon' due to
(A) this being a higher taxonomic category than taxon
(B) this being lower taxonomic category than taxon
(C) this being the plural of taxon
(D) this being the singular of taxon
63. Archaebacteria differ from eubacteria in:
(A) Mode of reproduction
(B) Cell membrane structure
(C) Mode of nutrition
(D) Cell shape
64. Which of the following shows coiled RNA strand and capsomeres?
(A) Retrovirus
(B) Polio virus
(C) Tobacco mosaic virus
(D) Measles virus
65. Five kingdom system of classification suggested by R.H. Whittaker is not based on:
(A) Complexity of body organisation
(B) Presence or absence of a well-defined nucleus
(C) Mode of reproduction
(D) Mode of nutrition.
66. Which of the following granules functions as storage reservoir for phosphate in bacteria?
(A) Sulphur granules
(B) Cyanophycean granules
(C) Volutin granules
(D) PHB granules
67. Identify the given figures of algae and select the correct option?

(I)

(II)
(A) (I) - Fucus, (II) - Polysiphonia
(B) (I) - Dictyota, (II) - Polysiphonia
(C) (I) - Dictyota, (II) - Porphyra
(D) (I) - Porphyra, (II) - Polysiphonia
68. The first seeded plants are the
(A) Bryophytes
(B) Gymnospersms
(C)
Algae
(D) Pteridophytes
69. Plants of this group are diploid and well adapted to extreme conditions. They grow bearing sporophylls in compact structures called cones. The group in reference is:
(A) Monocots
(B) Dicots
(C) Pteridophytes
(D) Gymnosperms
70. The main functions of the root system are all of the following, except
(A) Absorption of water and minerals from the soil
(B) Providing a proper anchorage to the plant parts
(C) Storing reserve food material
(D) Synthesis of 2, 4-D (2, 4-dichlorophenoxyacetic acid)
71. Identify the option with mismatched condition.

	Plant	Stem modification	Function
1.	Colocasia	Tuber	Storage of food
2.	Pumpkin	Stem tendril	Support and storage of food
3.	Ginger	Rhizome	Perennation
4.	Pistia	Offset	Vegetative propagation
5.	Citrus	Spines	Protection from browsing

(A)
$1,2 \& 5$
(B) $2,3 \& 5$
(C) $2,3 \& 4$
(D) $1,2,3 \& 5$
72. When the leaves are small and short lived, the petioles expand and become green to synthesise food as in
(A) Cactus
(B) Euphorbia
(C) Ruscus
(D) Australian Acacia
73. Select an incorrect statement w.r.t. cymose type of inflorescences.
(A) The main axis terminates in a flower.
(B) The main axis is limited in growth.
(C) Flowers are borne in a basipetal order.
(D) All statements are correct.
74. Protoderm and Procambium are:
(A) Permanent tissues
(B) Meristematic tissues
(C) Intercalary meristems
(D) Secondary tissues
75. Which one of the following is an effective tissue of growing organs with sufficient elasticity?
(A) Parenchyma
(B) Collenchyma
(C) Sclerenchyma
(D) All the above
76. Casparian strips in endodermis is composed of:
(A) Cellulose
(B) Pectin
(C) Suberin
(D) Lignin
77. "Sap wood" is also called
(A) Duramen
(B) Alburnum
(C) Autumn wood
(D) Early wood
78. Select incorrect statement for water potential / free energy:
(A) We can move the water up against gravity
(B) Sum of water potential between two points is a measure of the amount of work (energy) needed to move water from one point to the other
(C) Water moves from the point where water potential is greater, to the other point where water potential is less
(D) Pressure provides energy to water
79. Which is not a result of diffusion?
(A) Distribution of water, gases and solutes
(B) Supply of carbon dioxide from atmosphere to the leaves
(C) Loss of water vapour from leaves to the atmosphere.
(D) Transport of photosynthates
80. When turgidity increases within the two guard cells flanking each stomatal aperture or pore, the thin outer walls \qquad and force the inner walls into a \qquad shape.
(A) Bulge in, oval
(B) Bulge out, spindle
(C) Bulge in, crescent
(D) Bulge out, crescent
81. Select incorrect statement regarding active uptake of ions
(A) Active uptake of ions is partly responsible for the water potential gradient in roots, and therefore for the uptake of water by osmosis.
(B) Specific proteins in the membranes of root hair cells actively pump ions from the soil into the cytoplasm's of the epidermal cells.
(C) Ions are absorbed from the soil by only active transport
(D) Ions are absorbed from the soil by both passive and active transport
82. Which of the following mineral requires chelation in alkaline soil to increase its solubility?
(A)
Iron
(B) Manganese
(C) Magnesium
(D) Phosphorus
83. Boron is not required for:
(A) Pollen germination
(B) Photolysis of water
(C) Sugar translocation
(D) Uptake and utilisation of Ca^{++}ions
84. During/in active absorption of ions:
(A) Carriers are involved for both influx and efflux of ions
(B) Immobile carriers with pores pump ions
(C) Ions move in outer space against electrochemical gradients
(D) Downhill transport of ions occurs
85. Chlorophyll-b has-CHO group at \qquad of head porphyrin.
(A)
C-3
(B) $\mathrm{C}-7$
(C) $\mathrm{C}-5$
(D) $\mathrm{C}-8$
86. Select an incorrect statement w.r.t. non-cyclic photophosphorylation.
(A) In PS-II the reaction centre chl-a absorbs 680 nm wavelength of red light
(B) Electrons in the reaction centre of PS-I are excited when they receive red light of wavelength 700 nm
(C) $\quad \mathrm{NADP}^{+}$is reduced to $\mathrm{NADPH}+\mathrm{H}^{+}$
(D) The excited electron does not pass on to NADP^{+}but is cycled back to the PS-I complex through the ETS
87. The first acceptor of CO_{2} in rice plant during carbon fixation cycle is:
(A) PEP
(B) Malic acid
(C) RUBP
(D) PGA
88. Respiration is basically
(A) Anabolic and exergonic process
(B) Catabolic and exergonic process
(C) Anabolic and excergonic process
(D) Catabolic and endergonic process
89. How many substrate phosphorylation reaction occur in Glycolysis
(A)
4
(B)
(C) 8
(D) 6
90. In mitochondria, during ETS protons accumulate in the:
(A) Outer membrane
(B) Inner membrane
(C) Intermembrane space
(D) Matrix
91. Which of the following characteristic/s is/are seen in only male Ascaris:
(i) Males remove body wastes through the excretory pore.
(ii) Males are triploblastic, coelomate animals.
(iii) Males are shorter than females.
(A) Both i \& ii
(B) Both i \& iii
(C) iii only
(D) i only
92. Which group of animals belongs to phylum Aschelminthes?
(A) Ascaris, Ancylostoma, Pheretima
(B) Ascaris, Wuchereria, Ancylostoma
(C) Ascaris, Aurelia, Wuchereria
(D) Aurelia, Fasciola, Ascaris
93. Refer to the diagram given below \& find out which organism possess this type of coelom:
(A) Earthworm
(B) Liver fluke
(C) Pin worm
(D) Filarial worm

94. Which of the following statements is true for epithelial tissue?
(A) It arises only from the ectoderm.
(B) Its free surface either faces a body fluid or the outside environment.
(C) It has large amount of intercellular matrix.
(D) It is incapable of performing absorptive functions.
95. The tissue depicted in the following diagram is:
(A) Cartilage present at the ends of long bones
(B) Dense regular connective present in the tendons
(C) Dense irregular connective tissue present in the skin
(D) Loose connective tissue found in the capsule of abdominal organs

96. The first pair of wings in cockroach arises from and the second pair from
$\begin{array}{ll}\text { (A) prothorax, mesothorax } & \text { (B) mesothorax, metathorax } 1986\end{array}$
(C) metathorax, mesothorax
(D) mesothorax, prothorax
97. Read the following statements and identify the correct option:
(I) In prokaryotic cells, the nuclear membranes, chloroplasts, mitochondria, microtubules and different kinds of pili are absent.
(II) In eukaryotic cell, the nuclear membranes, chloroplasts, mitochondria and pili are present.
(III) In prokaryotic cell, the ribosome is of 70 S type, same as in mitochondria of eukaryotic animal cell.
(A) I and II are wrong III is correct (B) I is correct, II and III are wrong
(C) I and II are correct, III is wrong (D) I and III are correct and II is wrong
98. The main organelle involved in modification and routing of newly synthesized proteins to their destination is:
(A) Plastid
(B) Golgi body
(C) Lysosome
(D) Ribosomes
99. Kinetochore is:
(A) A type of chromophore
(B) Disc present at centromere
(C) Portion between centromere and telomere
(D) Constituent of chromomere
100. Who was the first to explain that the cells divide and new cells are formed from the pre-existing cells?
(A) Anton Von Leeuwenhoek
(B) Rudolf Virchow
(C) Robert Brown
(D) Purkinje
101. During cell cycle the sequences is:
(A) $\quad \mathrm{G}_{1} \rightarrow \mathrm{~S} \rightarrow \mathrm{G}_{2} \rightarrow \mathrm{M}$
(B) $\quad \mathrm{G}_{1} \rightarrow \mathrm{G}_{2} \rightarrow \mathrm{~S} \rightarrow \mathrm{M}$
(C)
$\mathrm{G}_{1} \rightarrow \mathrm{G}_{2} \rightarrow \mathrm{~S} \rightarrow \mathrm{M}$
(D) $\quad \mathrm{G}_{1} \rightarrow \mathrm{G}_{2} \rightarrow \mathrm{M} \rightarrow \mathrm{S}$
102. On treating a starch molecule with iodine, starch turns blue. What is the reason for this?
(A) Starch reduces iodine into iodides.
(B) The helical arrangement of starch molecule traps the iodine.
(C) Iodine reacts chemically with starch.
(D) \quad The pH of starch containing food is altered with iodine which changes its color.
103. In a holoenzyme, the prosthetic group:
(A) is a firmly bound non proteinaceous organic part.
(B) is a loosely bound inorganic part.
(C) is a loosely bound non proteinaceous organic part.
(D) is a tightly bound inorganic part .
104. The number of teeth that grow twice in human life is:
(A) 4
(B) 12
(C)
20
(D)
105. Mark the wrong match?

Structure

(A) Caecum
(B) Vermiform appendix
(C) Descending part of colon -Opens into the rectum which opens out through the anus.
(D) Stomach -Located in the lower right portion of the abdominal cavity.
106. Mark the wrong match?
(A) Intrinsic factor secreted by parietal cells \rightarrow Essential for absorption of vitamins B_{12}.
(B) Bile \rightarrow activates lipases.
(C) Succus entericus \rightarrow digestion of nucleic acid into nucleotides.
(D) Enterokinase \rightarrow secreted by intestinal mucosa activates trypsinogen into trypsin.
107. A man who is lying on a recliner and watching a football match is having around 19 ml of $\mathrm{O}_{2} / 100 \mathrm{mlof}$ blood in his arteries, what would be the volume of $\mathrm{O}_{2} / 100 \mathrm{ml}$ of blood in his veins?
(A) 14 ml
(B) 19 ml
(C) 10 ml
(D) 9 ml
108. The nasal chamber opens into:
(A) Oropharynx
(B) Nasopharynx
(C) Laryngopharynx
(D) Larynx
109. Fibrinogen present in the blood plasma is required for:
(A) Excretion
(B) Respiration
(C) Blood clotting
(D) All of these
110. Serum is:
(A) Fluid in blood from which all blood corpuscles are removed.
(B) Fluid in blood from which RBCs are removed.
(C) Fluid in blood from which blood cells and fibrinogen are removed.
(D) Same as plasma.
111. The first heart sound is produced due to:
(A) Simultaneous opening of both the atrioventricular valves
(B) Simultaneous closure of both the atrioventricular valves
(C) Simultaneous opening of both the semilunar valves
(D) Simultaneous closure of both the semilunar valves
112. Identify correctly the labeled parts in the following diagram:
(A) $\quad \mathrm{A}=$ Adrenal gland, $\mathrm{B}=$ Pelvis, $\mathrm{C}=$ Medulla, $\mathrm{D}=$ Cortex
(B) $\quad \mathrm{A}=$ Adrenal gland, $\mathrm{B}=$ Pelvis, $\mathrm{C}=$ Cortex, $\mathrm{D}=$ Medulla
(C) $\quad \mathrm{A}=$ Adrenal gland, $\mathrm{B}=$ Cortex, $\mathrm{C}=$ Pelvis, $\mathrm{D}=$ Medulla
(D) $\quad \mathrm{A}=$ Renal capsule, $\mathrm{B}=$ Pelvis, $\mathrm{C}=$ Medulla, $\mathrm{D}=$ Cortex

113. Which of the following statement is incorrect?
(A) Ureter, blood vessels and nerves enter kidney through Hilum.
(B) Kidney is situated between the levels of last thoracic and fourth lumbar vertebra close to the dorsal inner wall of the abdominal cavity.
(C) Human kidney measures $10-12 \mathrm{~cm}$ in length, $5-7 \mathrm{~cm}$ in width, $2-3 \mathrm{~cm}$ in thickness.
(D) Average weight of each kidney is $120-170 \mathrm{gms}$.
114. Floating ribs of thoracic cage are:
(A) 1 st to 7 th Pair
(B)
8th to 9 th pair (C)
8th to 10th Pair (D)
11th to 12 Pair
115. Acetabulum occur in:
(A)
cranium
(B) vertebrae
(C) pelvic girdle (D)
pectoral girdle
116. Hypothalamic hormones directly regulate the synthesis and secretion of:
(A) Thyroid hormones
(B) FPituitary hormones
(C) Adrenal hormones
(D) Parathormone
117. ACTH controls the secretion of:
(A)
Insulin
(B) Norepinephrine (C)
Epinephrine
(D) Glucocorticoids
118. The membranous labyrinth is surrounded by a fluid called:
(A) Perilymph
(B) Endolymph
(C) Cerebrospinal fluid
(D) Vitreous humor
119. The lower membrane of the scala vestibuli is the:
(A) Tympanic membrane
(B) Reissner's membrane
(C) Basilar's membrane
(D) Tectorial membrane
120. How many bones in the cranium of human beings are paired?
(A) Four
(B) Two
(C) One
(D) Eight

IIT JEE | MEDICAL | FOUNDATION

Answers to Sample Paper | 1 Year Medical

Sample Paper - II

PHYSICS		CHEMISTRY		BIOLOGY			
1.	(B)	31.	(C)	61.	(C)	91.	(C)
2.	(D)	32.	(D)	62.	(C)	92.	(B)
3.	(D)	33.	(A)	63.	(B)	93.	(A)
4.	(B)	34.	(D)	64.	(C)	94.	(B)
5.	(A)	35.	(B)	65.	(B)	95.	(C)
6.	(B)	36.	(A)	66.	(C)	96.	(B)
7.	(D)	37.	(A)	67.	(B)	97.	(A)
8.	(A)	38.	(B)	68.	(B)	98.	(B)
9.	(C)	39.	(B)	69.	(D)	99.	(B)
10.	(D)	40.	(A)	70.	(D)	17100.	(B)
11.	(C)	41.	(D)	71.	(A)	- 101.	(A)
12.	(D)	42.	(D)	72.	(D)	102.	(B)
13.	(B)	43.	(C)	-73.	(D)	NCE 1103.	(A)
14.	(D)	44.	(B)	- 74.	(B) $=$	+ 104.	(C)
15.	(C)	45.	(B)	75.	(B)	-105.	(D)
16.	(A)	46.	(B)	$\bigcirc 76$.	(C)	-106.	(C)
17.	(C)	47.	(A)	77.	(B) D	107.	(A)
18.	(B)	48.	(A)	78.		108.	(B)
19.	(A)		(B)	79.	(D)	109.	(C)
20.	(D)	50.	(B)	80.	(D)	110.	(C)
21.	(C)	J 5151	(A)	81.	(C)	111.	(B)
22.	(D) T T	J552.	(A)	82.	(A)	112.	(A)
23.	(B)	53.	(A)	83.	(B)	113.	(B)
24.	(B)	54.	(B)	84.	(A)	114.	(D)
25.	(A)	55.	(A)	85.	(A)	115.	(C)
26.	(D)	56.	(D)	86.	(D)	116.	(B)
27.	(D)	57.	(D)	87.	(C)	117.	(D)
28.	(A)	58.	(C)	88.		118.	(A)
29.	(A)	59.	(C)	89.	(B)	119.	(B)
30.	(C)	60.	(C)	90.	(C)	120.	(B)

Sample Paper - 1 Year Program

Admission \& Scholarship Test | Medical

PAPER SCHEME :

- The paper contains 120 Objective Type Questions divided into three sections: Section - I (Physics), Section - II (Chemistry) and Section - III (Biology).
- Section I and II contain 30 Multiple Choice Questions each and Section III contains 60 questions. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE CHOICE is correct.

MARKING SCHEME :

- For each question in Section-I, II and III, $\mathbf{4}$ marks will be awarded for correct answer and $\mathbf{- 1}$ negative marking for incorrect answer.

GENERAL INSTRUCTIONS:

- For answering a question, an ANSWER SHEET (OMR SHEET) is provided separately. Please fill your Name, Roll Number, Seat ID, Date of Birth and the PAPER CODE properly in the space provided in the ANSWER SHEET. IT IS YOUR OWN RESPONSIBILITY TO FILL THE OMR SHEET CORRECTLY.
- A blank space has been provided on each page for rough work. You will not be provided with any supplement or rough sheet.
- The use of log tables, calculator and any other electronic device is strictly prohibited.
- Violating the examination room discipline will immediately lead to the cancellation of your paper and no excuses will be entertained.
- No one will be permitted to leave the examination hall before the end of the test.
- Please submit both the question paper and the answer sheet to the invigilator before leaving the examination hall.

PART - I (PHYSICS)

1. From the top of a building, 16 m high, water drops are falling at equal intervals of time such that when the first drop reaches the ground, the fifth drop just starts. The distances between the successive drops, in metres, at that instant is
(A) $8,4,2,1$
(B) $7,5,3,1$
(C)
$.5,5,2.5,1$
(D) None of the above
2. A train accelerates from rest for time t_{1} at a constant rate α and then it retards at the constant rate β for time t_{2} and come to rest. The ratio of t_{1} / t_{2} is equal to
(A) α / β
(B) $\quad \beta / \alpha$
(C) α^{2} / β^{2}
(D) $\quad \beta^{2} / \alpha^{2}$
3. The percentage errors in the measurement of mass and speed are 2% and 3% respectively. How much will be the maximum error in the estimate of the kinetic energy obtained by measuring mass and speed?
(A)
11\%
(B) 8%
(C) 5%
(D) 1%
4. If $\vec{A}=4 \hat{i}+3 \hat{j}-2 \hat{k}$ and $\vec{B}=8 \hat{i}+6 \hat{j}-4 \hat{k}$, the angle between \vec{A} and \vec{B} is
(A) 45°
(B) 60°
(C) 0°
(D) $\quad 90^{\circ}$
5. A weight of 290 N and another of 200 N are suspended by a rope on either side of a frictionless pulley. The acceleration of each weight (in $\mathrm{m} / \mathrm{s}^{2}$) is
(A) $\quad 1.5$
(B)
(C)
(D) 2.5
6. A body kept on a smooth inclined plane having inclination 1 in x will remain stationary relative to the inclined plane if the plane is given a horizontal acceleration equal to
(A)

(B) $\frac{g x}{\sqrt{x^{2}-1}}$
(C) $\frac{\sqrt{x^{2}-1}}{g}$
(D) $g \sqrt{x^{2}-1}$
7. Uniform chain of length L and mass M is lying on a smooth table and one-third of its length is hanging vertically down over the edge of the table. The work required to pull the hanging part on the table is
(A)
MgL
(B) $\mathrm{MgL} / 3$
(C) $\mathrm{MgL} / 9$
(D) $\mathrm{MgL} / 18$
8. A 4 kg stone tied at the end of a string 1 m long is whirled in a vertical circle. At the instant when the string makes an angle θ with the vertical, the linear speed of the stone is $4 \mathrm{~m} / \mathrm{s}$ and the tension in the string is 103.2 N . Then the value of θ is
(A) $\quad 0^{\circ}$
(B) 30°
(C) 60°
(D) 90°
9. A particle performs uniform circular motion with angular momentum l. If the frequency of the motion of the particle is doubled and its kinetic energy halved, the angular momentum becomes
(A)
$2 l$
(B) $4 l$
(C) $\quad l / 2$
(D) $\quad l / 4$
10. A constant torque acting on a uniform circular wheel changes its angular momentum from A_{0} to $4 A_{0}$ in 4 seconds. The magnitude of this torque is
(A) $\quad 3 \mathrm{~A}_{0} / 4$
(B) $\quad \mathrm{A}_{0}$
(C) $4 \mathrm{~A}_{0}$
(D) $12 \mathrm{~A}_{0}$
11. The escape velocity from the earth is $11 \mathrm{~km} / \mathrm{s}$. The escape velocity (in km / s) from a planet having twice the radius and the same mean density as those of the earth is
(A)
5.5
(B) 11
(C) 22
(D) None of these
12. 3A satellite of mass m is moving around the earth in a circular orbit of radius r. If the mass of the earth is M, then the energy required to take the satellite to an orbit of radius $3 r$ is
(A) $\quad G M m / r$
(B) $\quad G M m / 2 r$
(C) $\quad G M m / 3 r$
(D) $\quad G M m / 6 r$
13. The extension produced in a wire by the application of a load is 3.0 mm . The extension in a wire of the same material and length but half the radius, by the same load, is
(A) $\quad 0.75 \mathrm{~mm}$
(B) 1.5 mm
(C) 6.0 mm
(D) 12.0 mm .
14. A long cylindrical glass vessel has a small hole of radius r at its bottom. The depth to which the vessel can be lowered vertically in a deep water bath (surface tension T, density d) without any water entering inside is
(A) $\mathrm{T} / \mathrm{rdg}$
(B) $2 \mathrm{~T} / \mathrm{rdg}$
(C) $3 \mathrm{~T} / \mathrm{rdg}$
(D) $4 \mathrm{~T} / \mathrm{rdg}$
15. The temperatures of equal masses of three different liquids A, B and C are $12^{\circ} \mathrm{C}, 19^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$, respectively. When A and B are mixed, the temperature is $16^{\circ} \mathrm{C}$ and when B and C are mixed, it is $23^{\circ} \mathrm{C}$. The temperature when A and C are mixed is
(A)
$10.1^{\circ} \mathrm{C}$
(B) $20.2^{\circ} \mathrm{C}$
(C) $30.3^{\circ} \mathrm{C}$
(D) $\quad 40.4^{\circ} \mathrm{C}$
16. Two gases are enclosed in a container at constant temperature. One of the gases, which is diatomic, has relative molecular mass eight times the other, which is monoatomic. The ratio of the r.m.s speed of the molecules of the monoatomic gas to that of the molecules of the diatomic gas is
(A)
8
(B)
(C) $\quad 2 \sqrt{ } 2$
(D) 1982
17. If the amount of heat given to a system be 35 J and the amount of work done by the system be -15 J , then change in internal energy of system is
(A)
$-50 \mathrm{~J}$
(B) 20 J
(C) $=30 \mathrm{~J}$
(D) $\quad 50 \mathrm{~J}$
18. A piece of wood of relative density 0.36 floats in oil of relative density 0.90 . The fraction of volume of wood above the surface of oil is
(A)
0.3
(B) 0.4
(C) 0.6
(D) 0.8
19. In a U tube experiment, a column $A B$ of water is balanced by a column $C D$ of paraffin, as shown in the figure. The relative density of paraffin is
(A)
$\mathrm{h}_{2} / \mathrm{h}_{1}$
(B) h_{1} / h_{2}
(C) $\quad\left(\mathrm{h}_{1}-\mathrm{h}_{2}\right) / \mathrm{h}_{1}$
(D) $\quad \mathrm{h}_{2} /\left(\mathrm{h}_{1}+\mathrm{h}_{2}\right)$

20. The bob of a simple pendulum of period T is given a negative charge. If it is allowed to oscillate above a positively charged plate, the new time period will be
(A) equal to T
(B) more than T
(C) less than T
(D) infinite.
21. A particle of mass 0.5 kg executes S.H.M. Its energy is 0.04 J . If its time period is π seconds, its amplitude is
(A) 10 cm
(B) 15 cm
(C) 20 cm
(D) 40 cm
22. A string stretched by a weight of 4 kg is vibrating in its fundamental mode. The additional weight required to produce an octave of the first is
(A)
4 kg
(B) 8 kg
(C) 12 kg
(D) 16 kg
23. A car, sounding a horn of frequency 1000 Hz , is moving directly towards a huge wall at a speed of $15 \mathrm{~m} / \mathrm{s}$. If speed of sound is $340 \mathrm{~m} / \mathrm{s}$, then the frequency of the echo heard by the driver is
(A) $\quad 1046 \mathrm{~Hz}$
(B) 954 Hz
(C) 1092 Hz
(D) 908 Hz
24. From the top of a building 20 m high, a ball is projected horizontally. If the line joining the point of projection to the point where it hits the ground makes an angle of 45° with the horizontal, then the initial velocity of the stone is $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
(A) $5 \mathrm{~m} / \mathrm{s}$
(B) $10 \mathrm{~m} / \mathrm{s}$
(C) $15 \mathrm{~m} / \mathrm{s}$
(D) $20 \mathrm{~m} / \mathrm{s}$
25. The equation of motion of a projectile are given by $x=36 t$ metre and $2 y=96 t-9.8 t^{2}$ metre. The angle of projection is
(A) $\sin ^{-1}\left(\frac{4}{5}\right)$
(B) $\sin ^{-1}\left(\frac{3}{5}\right)$
(C) $\sin ^{-1}\left(\frac{4}{3}\right)$
(D) $\sin ^{-1}\left(\frac{3}{4}\right)$
26. Two rods of the same length and diameter, having thermal conductivities K_{1} and K_{2}, are joined in parallel. The equivalent thermal conductivity of the combination is
(A) $\quad \mathrm{K}_{1} \mathrm{~K}_{2} / \mathrm{K}_{1}+\mathrm{K}_{2}$
(B) $\quad \mathrm{K}_{1}+\mathrm{K}_{2}$
(C) $\quad\left(\mathrm{K} 1+\mathrm{K}_{2}\right) / 2$
(D) $\quad\left(\mathrm{K}_{1} \mathrm{~K}_{2}\right)^{1 / 2}$
27. A body, having a surface area of $5.0 \mathrm{~cm}^{2}$, radiates 300 J of energy per minute at a temperature of $727^{\circ} \mathrm{C}$. The emissivity of the body is (Stefan's constant $=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} / \mathrm{K}^{4}$)
(A)
0.09
(B) 0.18
(C) $\quad 0.36$
(D) 1980.54
28. A boat which has a speed of $5 \mathrm{~km} / \mathrm{h}$ in still water crosses a river of width 1 km along the shortest possible path in 15 minutes. The velocity of the river water in km / h is
(A)
(B)
(C)
(D) 5
29. In a rocket of mass 1000 kg fuel is consumed at the rate of $40 \mathrm{~kg} / \mathrm{s}$. The velocity of the gases ejected from the rocket is $5 \times 10^{4} \mathrm{~m} / \mathrm{s}$. The thrust on the rocket is
(A) $2 \times 10^{3} \mathrm{~N}$
(B) $E 5 \times 10^{4} \mathrm{~N}$
(C) $2 \times 10^{6} \mathrm{~N}$
(D) $2 \times 10^{9} \mathrm{~N}$
30. A solid sphere of mass 1 kg and radius 3 cm is rotating about an axis passing through its centre with an angular velocity of $50 \mathrm{rad} / \mathrm{s}$. The kinetic energy of rotation is
(A)
9/20 J
(B) 90 J
(C) 910 J
(D) 4500 J

PART - II (CHEMISTRY)

31. If K_{1} and K_{2} are the respective equilibrium constants for the two reactions,
$\mathrm{XeF}_{6}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{XeOF}_{4}(\mathrm{~g})+2 \mathrm{HF}(\mathrm{g}) \quad \mathrm{XeO}_{3}(\mathrm{~g})+\mathrm{XeF}_{6}(\mathrm{~g}) \rightleftharpoons \mathrm{XeOF}_{4}(\mathrm{~g})+\mathrm{XeO}_{2} \mathrm{~F}_{2}(\mathrm{~g})$
the equilibrium constant of the reaction, $\mathrm{XeO}_{3}(\mathrm{~g})+2 \mathrm{HF}(\mathrm{g}) \rightleftharpoons \mathrm{XeO}_{2} \mathrm{~F}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ will be
(A) $\frac{\mathrm{K}_{1}}{\left(\mathrm{~K}_{2}\right)^{2}}$
(B) $\quad \mathrm{K}_{1} \cdot \mathrm{~K}_{2}$
(C) $\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}$
(D) $\frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}$
32. In the reaction, $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ when 1 mole of ammonia and 1 mole of O_{2} are made to react to completion what will happen?
(A) $\quad 1.0$ mole of $\mathrm{H}_{2} \mathrm{O}$ will be produced
(B) 1.0 mole of NO will be produced
(C) all the oxygen will be consumed
(D) all the ammonia will be consumed
33. 2-bromopentane is heated with potassium ethoxide in ethanol. The major product obtained is
(A) 2-ethoxypentane
(B) Pentene-1
(C) Pentane
(D) Pent-2-ene
34. The first ionization potentials (eV) of Be and B respectively are
(A)
8.29, 9.32
(B) $9.32,9.32$
(C) $\quad 8.29,8.29$
(D) $\quad 9.32,8.29$
35. A group which deactivates the benzene ring towards electrophilic substitution but which directs the incoming group principally to the ortho and para-positions is
(A) $\quad-\mathrm{NH}_{2}$
(B) $\quad-\mathrm{Cl}$
(C) $\quad-\mathrm{NO}_{2}$
(D) $\quad-\mathrm{C}_{2} \mathrm{H}_{5}$
36. The solubility product constant $\mathrm{K}_{\text {sp }}$ of $\mathrm{Mg}(\mathrm{OH})_{2}$ is 9.0×10^{-12}. If a solution is 0.010 M with respect to Mg^{2+} ion, what is the maximum hydroxide ion concentration which could be present without causing the precipitation of $\mathrm{Mg}(\mathrm{OH})_{2}$?
(A) $\quad 1.5 \times 10^{-7} \mathrm{M}$
(B) 3.0×10^{-7}
(C) $1.5 \times 10^{-5} \mathrm{M}$
(D) $\quad 3.0 \times 10^{-5} \mathrm{M}$
37. Zero dipole moment is possessed by
(A) CIF
(B) $\quad \mathrm{PCl}_{3}$
(C) $\quad \mathrm{CFCl}_{3}$
(D) $\quad \mathrm{SiF}_{4}$
38. Isostructural pairs out of following are
(A)
$\left(\mathrm{NF}_{3}, \mathrm{NO}_{3}^{-}\right)$and $\left(\mathrm{BF}_{3}, \mathrm{H}_{3} \mathrm{O}^{+}\right)$
(B) $\quad\left(\mathrm{NF}_{3}, \mathrm{HN}_{3}\right)$ and $\left(\mathrm{NO}_{3}^{-}, \mathrm{BF}_{3}\right)$
(C) $\quad\left(\mathrm{NF}_{3}, \mathrm{H}_{3} \mathrm{O}^{+}\right)$and $\left(\mathrm{NO}_{3}^{-}, \mathrm{BF}_{3}\right)$
(D) $\left(\mathrm{NF}_{3}, \mathrm{H}_{3} \mathrm{O}^{+}\right)$and $\left(\mathrm{HN}_{3}^{\circ}, \mathrm{BF}_{3}\right)$
39. $\quad \mathrm{C}_{2} \mathrm{H}_{2} \xrightarrow[\text { one mole }]{\mathrm{NaNH}_{2}} \mathrm{~A} \xrightarrow{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}} \mathrm{B}$. B will be
(A) Isobutylene
(B)
2-Butene
(C) 1-Butyne
(D) 2-Butyne
40. $\mathrm{CH}_{2}=\mathrm{CH}_{2} \xrightarrow[\mathrm{CCl}_{4}]{\mathrm{Cl}_{2}} \mathrm{~A} \xrightarrow{\mathrm{AqKOH}} \mathrm{B} \xrightarrow[\mathrm{ZnCl}_{2} \mathrm{D}]{\text { Anhydrous }} \mathrm{C}$. C will be
(A)
Acrolein
(B) Crotonaldehyde (
Acetaldehyde
(D) $\quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
41. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}+\mathrm{HBr} \rightarrow \mathrm{A} \xrightarrow[\mathrm{KOH}]{\mathrm{Alc}} \mathrm{B} \xrightarrow[\text { alk }]{\text { dil }} \mathrm{C}$. C will be
(A) 2-butanol
(B) butane-2, 3-diol(C)
butane-1, 4-diol (D) 1-butanol
42. In Kjeldahl method, V ml of $\mathrm{H}_{2} \mathrm{SO}_{4}$ of molarity M are taken for absorbing NH_{3} and $\mathrm{V}_{1} \mathrm{ml}$ is vol of NaOH of molarity M for titration of excess $\mathrm{H}_{2} \mathrm{SO}_{4}$, then \% of nitrogen is given by (m gm is mass of organic compound)
(A) $\frac{1.4 \times \mathrm{M}\left(\mathrm{V}-\frac{\mathrm{V}_{1}}{2}\right)}{\mathrm{m}}$
(B) $\frac{1.4 \times \mathrm{M} \times 2\left(\mathrm{~V}-\frac{\mathrm{V}_{1}}{2}\right)}{\mathrm{m}}$
(C) $\frac{1.4 \times \mathrm{M}\left(\mathrm{V}-\frac{\mathrm{V}_{1}}{2}\right)}{2 \mathrm{~m}}$
(D) $\frac{1.4 \times \mathrm{M} \times 2\left(\mathrm{~V}-\frac{\mathrm{V}_{1}}{2}\right)}{500 \mathrm{~m}}$
43. Benzene reacts with acetyl chloride in the presence of AlCl_{3} to give
(A) Chlorobenzene
(B)
Toluene
(C) Acetophenone
(D) None of these
44. $\mathrm{HC} \equiv \mathrm{CH} \underset{\mathrm{Ba}(\mathrm{CN})_{2}}{\mathrm{HCN}} \mathrm{A} \xrightarrow{\text { Polymerise }} \mathrm{B} . \mathrm{B}$ is used to prepare
(A) Pipes
(B) Foils
(C) Fibre
(D) Transparent domes
45. A solution of $\mathrm{NH}_{4} \mathrm{HSO}_{4}$ is electrolysed. Substance obtained is
(A) $\quad \mathrm{H}_{2} \mathrm{SO}_{4}$
(B) $\quad \mathrm{H}_{2} \mathrm{O}_{2}$
(C) $\quad \mathrm{NH}_{4} \mathrm{OH}$
(D) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{O}_{2}$
46. Relative hydrated ionic radii is in the order as
(A) $\mathrm{Li}^{+}>\mathrm{Na}^{+}>\mathrm{K}^{+}>\mathrm{Rb}^{+}>\mathrm{Cs}^{+}$
(B) $\mathrm{Na}^{+}>\mathrm{Li}^{+}>\mathrm{K}^{+}>\mathrm{Rb}^{+}>\mathrm{Cs}^{+}$
(C)
$\mathrm{Cs}^{+}>\mathrm{Rb}^{+}>\mathrm{K}^{+}>\mathrm{Na}^{+}>\mathrm{Li}^{+}$
(D) $\mathrm{Li}^{+}>\mathrm{Cs}^{+}>\mathrm{Na}^{+}>\mathrm{K}^{+}>\mathrm{Rb}^{+}$
47. Mircro cosmic salt is
(A) $\quad \mathrm{Na}\left(\mathrm{NH}_{4}\right) \mathrm{HPO}_{4}$
(B) NaHKPO_{4}
(C) $\quad\left(\mathrm{NH}_{4}\right) \mathrm{NaPO}_{4}$
(D) $\quad \mathrm{Na}_{2}\left(\mathrm{NH}_{4}\right) \mathrm{PO}_{4}$
48. Which one is not correct for boron and silicon?
(A) Chloride of both B and Si fume in moist air
(B) $\quad \mathrm{Mg}$ combines with B and Si both
(C) Both of them exhibit allotropy
(D) Carbide of boron is not hard where SiC is very hard
49. Two elements A (At. Wt. 75) and B (At. Wt. 16) combine to give a compound with 75.8% of A. Formula of compound is
(A)
AB
(B) $E E_{A_{2} B}$
(C) $\quad \mathrm{AB}_{2}$
(D) $\quad \mathrm{A}_{2} \mathrm{~B}_{3}$
50. $\mathrm{H}_{2} \mathrm{~S}$ contains 5.88%, hydrogen $\mathrm{H}_{2} \mathrm{O}$ contains 11.11% of hydrogen, while SO_{2} contains $50 \% \mathrm{~S}$. These figures illustrate
(A) law of conservation of mass
(B) law of constant proportion
(C) law of multiple proportion
(D) law of reciprocal proportion
51. Molarity of $\frac{\mathrm{N}}{100} \mathrm{KMnO}_{4}$ in dilute alkaline medium is equal
(A) $\frac{\mathrm{M}}{300}$
(B) $\frac{\mathrm{M}}{200}$
(C) $\frac{\mathrm{M}}{100}$
(D) $\quad \frac{\mathrm{M}}{50}$
52. Density of Neon will be highest at
(A) \quad STP
(B) $0^{\circ} \mathrm{C}, 2 \mathrm{~atm}$
(C) $273^{\circ} \mathrm{C}, 1 \mathrm{~atm}$
(D) $273^{\circ} \mathrm{C}, 2 \mathrm{~atm}$
53. Increasing the temperature of an aqueous solutions will cause
(A) decrease in molarity
(B) decrease in $\%$ by volume
(C) decrease in mole fraction
(D) decrease in $\%$ by mass
54. $\quad \mathrm{A}_{2} \mathrm{~B}_{3} \rightarrow 2 \mathrm{~A}^{+3}+3 \mathrm{~B}^{-2}, \mathrm{~K}_{\mathrm{sp}}$ is given by where $\mathrm{x} \mathrm{mol} \mathrm{L}^{-1}$ is solubility
(A) $\quad \mathrm{K}_{\mathrm{sp}}=(2 \mathrm{x})(3 \mathrm{x})$
(B) $\quad \mathrm{K}_{\text {sp }}=(2 \mathrm{x})^{2}(3 \mathrm{x})$
(C) $\quad \mathrm{K}_{\mathrm{sp}}=(2 \mathrm{x})^{2}(3 \mathrm{x})^{3}$
(D) $\quad \mathrm{K}_{\mathrm{sp}}=2 \mathrm{x}(3 \mathrm{x})^{3}$
55. Out of following which is correct?
(A) $\Delta \mathrm{H}=\Delta \mathrm{E}-\mathrm{n}_{\mathrm{g}} \mathrm{RT}$
(B) $\Delta \mathrm{G}=\Delta \mathrm{H}-\Delta \mathrm{S}$
(C) $\Delta \mathrm{G}^{\circ}=-2.303 \mathrm{RT} \log \mathrm{K}$
(D) $\quad \Delta \mathrm{H}=\frac{\Delta \mathrm{E}}{2.303 \mathrm{R}}\left(\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right)$
56. Which of the following is not an electrophile?
(A) $\quad \mathrm{SO}_{3}$
(B) $\overline{\mathrm{C}} \mathrm{Cl}_{2}$
(C) $\quad \stackrel{+}{\mathrm{NO}_{2}}$
(D) NH_{2}^{-}
57. The hybrid orbitals used by bromine atom in BrF_{3} are
(A) sp^{2}
(B) sp^{3}
(C) $\mathrm{sp}^{3} \mathrm{~d}$
(D) $\quad \mathrm{sp}^{3} \mathrm{~d}^{2}$
58. The first ionization potential of $\mathrm{Mg}, \mathrm{Al}, \mathrm{P}$ and S follows the order
(A) $\quad \mathrm{Mg}<\mathrm{Al}<\mathrm{P}<\mathrm{S}$
(B) $\mathrm{Al}<\mathrm{Mg}<$ P $<$ S
(C) $\mathrm{Al}<\mathrm{Mg}<$ S $<$ P
(D) $\quad \mathrm{Mg}<\mathrm{Al}<\mathrm{S}<\mathrm{P}, E 1986$
59. As per the uncertainty principle, $\Delta \mathrm{x} . \Delta \mathrm{p} \geq$
(A)
h
(B) $\quad \mathrm{h} / 4 \pi$
(C) x
(D) Zero
60. The enthalpy change in an isothermal reversible expansion of an ideal gas is
(A)
Positive
(B)
(C) Zero
(D) Infinitely large

PART - III (BIOLOGY)

61. Classification of organisation based on evolutionary as well as genetic relationship is called
(A) Biosystematics
(B) Phenetics
(C) Numerical taxonomy
(D) Cladistics
62. Founder of binomial nomenclature was
(A)
Linnaeus
(B) Mendel
(C) Darwin
(D) Lamarck
63. The motile bacteria are able to move by
(A) Pili
(B) Fimbriae
(C) Flagella
(D) Cilia
64. True nucleus is absent in:
(A) Vaucheria
(B) Volvox
(C) Anabaena
(D) Mucor
65. Which is not correct for fungi belonging to the class Deuteromycetes?
(A) Commonly called imperfect fungi
(B) Reproduce only by asexual spores
(C) Includes only parasitic fungi
(D) Mycelium is septate and branched
66. Archegoniophore is present in
(A) Adiantum
(B) Funaria
(C) Marchantia
(D) Chara
67. Selaginella and Salvinia are considered to represent a significant step towards evolution of seed habit because
(A) Female gametophyte is free and gets dispersed like seeds
(B) Female gametophytes lack archegonia
(C) Megaspores possess endosperm and embryo surrounded by seed coat
(D) Embryo develops in female gametophyte which is retained on parent sporophyte.
68. Select an incorrect statement.
(A) The root is covered at the apex by a thimble-like structure called the root cap
(B) Roots in some plants change their shape and structure and become modified.
(C) Pneumatophores, help to get CO_{2} for photosynthesis.
(D) Tap roots of carrot, turnips and adventitious roots of sweet potato, get swollen and store food.
69. Type of modified stem meant for vegetative reproduction in pineapple is also present in
(A) Strawberry
(B) Jasmine(C)
Chrysanthemum
(D) Grass
70. The rachis in palmately compound leaves
(A) Is absent
(C) Represents midrib of leaf
(B) Represents petiole
SINCE 1986
(C) Represt
(D) Branched
S
71. Select an incorrect statement w.r.t. racemose type of inflorescences.
(A) The main axis continues to grow.
(B) The flowers are borne laterally.
(C) Flowers are borne in an acropetal succession.
(D) All statements are correct.
72. Promeristem gives rise to
(A) Lateral Meristem
(B) Cork Cambium
(C) Apical Meristem
(D) Secondary Meristem
73. Collenchyma differs from sclerenchyma in
(A) Retaining protoplasm at maturity
(B) Having thick walls
(C) Having wide lumen
(D) Being meristematic
74. The layer of cells outside the phloem meant for giving rise to the root branches is called
(A) Cambium
(B) Corpus
(C) Endodermis
(D) Pericycle
75. Other names of secondary cortex, cork cambium and cork are
(A) Phellem, phelloderm and phellogen
(B) Phellogen, phellem and phelloderm
(C) Phelloderm, phellogen and phellem
(D) Phellogen, phelloderm and phellem
76. The casparian strip is composed of a wax-like substance called
(A) Suberin
(B) Cutin
(C) Lignin
(D) Anthocyanin
77. Imbibition is a type of:
(A) Osmosis
(B) Active transport(C)
Bulk flow
(D) Diffusion
78. Unloading of mineral ions occurs at the fine vein endings through:
(A) Diffusion
(B) Active uptake
(C) Both (A) and (B)
(D) Mass flow
79. The opening of the stoma is also aided due to the orientation of the microfibrils in the cell walls of the guard cells. Cellulose microfibrils are oriented \qquad rather than \qquad making it easier for the stoma to open.
(A) Longitudinally, radially
(B) Radially, longitudinally
(C) Randomly, radially
(D) Randomly, longitudinally
80. In Hydroponics:
(A) pH is maintained at $8-9$
(B) Reuse of water and minerals is possible
(C) Chemically active medium is used
(D) Yield is not uniform
81. Classification of essential elements is:
(A) A quantitative feature
(B) Based on the size of minerals
(C) A qualitative feature
(D) Based on the size of the plant
82. Plants absorb minerals from the soil:
(A) Independently of water absorbtion
(B) By a process independent of water absorbtion
(C) Only when soil solution is hypertonic to cell sap
(D) Only when soil solution is hypotonic to cell sap
83. Shaded plants have
(A)
More PSII
(B) Large grana
(C) Less PSI
(D) All of these
84. Release of electrons in photosynthesis occurs from?
(A) Reaction centre
(B) Quantasome
(C) Antenna molecules
(D) Both $\mathbf{(A)} \&(B)$
85. In Calvin (C_{3} cycle)
(A) $\quad 12$ ATPs are used for uplifting $12 \mathrm{NADPH}_{2}$ to act as hydrogen donor
(B) $\quad 2 \mathrm{CO}_{2}$ entry results in net output of one PGAL.
(C) PGAL is first carbohydrate synthesised
(D) All statements are correct
86. RQ depends upon
(A) Presence or absence of oxygen
(B) O_{2} content of substrate
(C) Nature of substrate
(D) All of these
87. How many substrate level phosphorylation take place in TCA cycle
(A) 1
(B) 2
(C) 3
(D) 4
88. Terminal electron acceptor in electron transport system in mitochondria is:
(A)
(B) cyt a
(C) $\quad \mathrm{H}_{2} \mathrm{O}$
(D) \quad cyt a_{3}
89. Increased vacuolation, cell enlargement and new cell wall deposition are the characteristics of cells in
\qquad phase of growth.
(A) Meristematic
(B) Elongation
(C) Maturation
(D) Differentiation
90. Which of the following physiological effects is caused in plants by gibberellic acid?
(A) Shortening of genetically tall plants
(B) Elongation of genetically dwarf plants
(C) Rooting in stem cuttings
(D) Yellowing of young leaves
91. Which of the following statement regarding cilia is not correct?
(A) Cilia contains nine doublet microtubules surrounded by two single microtubules.
(B) The organized beating of cilia is controlled by fluxes of Ca^{+2} across the membrane.
(C) Cilia are hair like cellular appendages.
(D) Microtubules of cilia are composed of tubulin proteins.
92. Choose the correct statement:
(A) Lizards show autotomy
(B) Most lizards are oviparous
(C) Poison gland in snakes are modified parotid gland
(D) All of these
93. Which of the following occurs more than one and less than five in a chromosome?
(A)
Chromatid
(B)
DNA
(C)
Centromere
(D) Telomere
94. Red colour of tomato is due to:
(A) Lycopene in chloroplast
(B) Anthocyanin in leucoplast
(C) Xanthophyll in chloroplast
(D) Lycopene in chromoplast
95. The given diagram (A) and (B) represents which stage of meiosis?

(A)	(1) Prophase I	(2) Metaphase I
(B)	(1) Metaphase I	(2) Anaphase I
(C)	(1) Metaphase	(2) Anaphase
(D)	(1) Anaphase	(2) Telophase

96. Which of the following is not related with synthesis phase of cell cycle?
(A) Duplication of centriole occurs.
(B) 2 C amount of DNA is doubled into 4C.
(C) Tubulin and histone protein are synthesized.
(D) Synthesis of histone protein occurs.
97. The statement which is not correct amongst the following is:
(A) Starch is a homopolymer of glucose containing amylose and amylopectin.
(B) Maltose is a disaccharide formed from two glucose units.
(C) Cellulose is a polysaccharide formed from multiple units of glucose.
(D) Inulin is a polymer of NAG.
98. Identify the group that includes nucleotides:
(A) Adenosine , guanosine, Cytidine
(B) Adenylic acid, adenosine, Uridine
(C) Adenylic acid, Uridylic acid, guanylic acid
(D) Adenosine, thymidine, Uridine
99. Holoenzyme is:
(A) Apoenzyme + cofactor + prosthetic group
(B) Prosthetic group + cofactor
(C) Apoenzyme + apoenzyme
(D) Apoenzyme + cofactor
100. Which characteristic is not true for chordates?
(A) Pharynx is perforated by gill slits
(B) Presence of post anat tail
(C) Heart is dorsal
(D) Bilaterally symmetrical, triploblastic, coelomate
101. Given below are the characteristics of the following animal. Which of these are true?
(i) Migrate to fresh water for spawning
(ii) They have paired fins
(iii) Circulation is of open type
(iv) Vertebral column is cartilaginous
(A) ii \& iii
(B) \quad i \& iii
(C) $\mathrm{i} \& \mathrm{iv}$
(D) ii \& iv
102. The muscle tissue type that consists of single, very long, cylindrical, multinucleate cells with very obvious striations is:
(A) skeletal muscle only
(B) cardiac and smooth muscle
(C) cardiac and skeletal muscle
(D) cardiac muscle only
103. Which of the following statement is false?
(A) Cell body of neuron has nucleus (B) Nissl's granules are present in cyton
(C) Unmyelinated axons do not have Schwann cells
(D) A neuron can have one dendrite \& one axon
104. In the given diagram cystic duct and common bile duct are:

(A) 1 and 4
(B) 2 and 3
(C) 1 and 3
(D) 4 and 2
105. After ingestion, the first type of macromolecule to be worked on by enzymes in the human digestive system is:
(A) protein (B)
carbohydrate
(C) cholesterol
(D) glucose
106. The diffusion membrane, through which gaseous exchange occur in the lungs comprises of:
(A) Alveolar epithelium \& capillary endothelium.
(B) Alveolar epithelium \& capillary endothelium and the basement membrane between them.
(C) Only alveolar epithelium.
(D) Alveolar epithelium and basement membrane of alveoli.
107. Read the given statement and fill in the blanks:
"Blood is the medium for transport of gases. About \qquad (I) \qquad $\%$ of CO_{2} is transported in dissolved form through plasma while around \qquad (II) \qquad \% is transported through RBC."

	(I)	(II)
(A)	7%	70%
(B)	70%	$20-25 \%$
(C)	$20-25 \%$	7%
(D)	7%	$20-25 \%$

108. Mark the correct statement regarding the events of cardiac cycle:
(A) Atrial filling is always active and it is followed by first heart sound
(B) Second heart sound occurs after the completion of ventricular systole
(C) Closing of semilunar valve in heart depends upon increase in auricular pressure and decrease in ventricular pressure respectively
(D) Joint diastole begins after the completion of atrial systole
109. In resting stage normal activity of heart is regulated by:
(i) Nodal tissue of heart
(ii) Medulla oblongata
(iii) Purkinje fibres
(iv) Branches of sympathetic and parasympathetic nervous system
(A) i , ii, iii, iv
(B) i, ii only
(C) i, iii only
(D) ii, iv only
110. The structural and functional units of kidney:
(A) Neuron
(B) Nephridia
(C) Uriniferous tubule
(D) Renal tubule
111. Renal corpuscle consists of:
(A) Glomerulus only
(B) Afferent and efferent arterioles
(C) Glomerulus and Bowman's capsule
(D) Malphigian body and Renal tubule
112. Following are the events which occur during muscle contraction. Arrange them in a proper sequence:
(i) The sarcoplasmic reticulum releases the stored Ca^{++}which binds with the specific sites present on the troponin component of the thin filaments.
(ii) A neurotransmitter is released at the neuromuscular junction.
(iii) The sarcolemma is depolarised which results in the inflow of Na^{+}inside the sarcomere.
(iv) Conformational change occurs in the troponin molecule and the active sites present on F-actin molecules are exposed.
(v) Myosin head, now binds with active site of actin.
(vi) During relaxation, the Ca^{++}is pumped back into the sarcoplasmic reticulum. Troponin masks the active sites for the myosin.
(A)
c, b, d, a e e, f
(B)
b, c, d, a, e, f (C)
$\mathrm{b}, \mathrm{c}, \mathrm{a}, \mathrm{d}, \mathrm{e}, \mathrm{f}$
(D) $\mathrm{b}, \mathrm{c}, \mathrm{a}, \mathrm{e}, \mathrm{d}, \mathrm{f}$
113. Which of the following is not correct for red muscle fibres?
(A) Myoglobin content is very high
(B) Amount of mitochondria is very high
(C) They have very high concentration of endoplasmic reticulum
(D) They are also called aerobic muscle fibres
114. In the digestive system of cockroach gastric caecae are present at the junction of:
(A) Mid gut and hind gut
(B) Hind gut and fore gut
(C) Fore gut and mouth
(D) Mid gut and fore gut
115. On application of a stimulus on the axonal membrane:
(A) There is a rapid influx of K^{+}at that site
(B) There is a rapid efflux of Na^{+}at that site
(C) There is a rapid influx of Na^{+}at that site
(D) There is a rapid efflux of K^{+}at that site
116. All of the following are parts of forebrain, except
(A) Cerebellum
(B) Corpus callosum
(C) Association areas
(D) Hypothalamus
117. The eustachian tube connects \qquad with the \qquad :
(A) External auditory canal, middle ear cavity
(B) Middle ear cavity, pharynx
(C) External auditory canal, labyrinth
(D) Cochlea, larynx
118. The hormone which regulates the basal metabolism in our body is secreted from:
(A) Adrenal cortex
(B) Pancreas
(C) Pituitary
(D) Thyroid
119. Calcitonin is a thyroid hormone which:
(A) Elevates calcium level in blood
(B) Has no effect on calcium
(C) Elevates potassium level in blood
(D) Lowers calcium level in blood
120. The gonadotropic hormones are secreted by:
(A) Anterior lobe of pituitary
(B) Interstitial cells of testes
(C) Adrenal cortex
(D) Posterior part of thyroid 6
[^0]IIT JEE | MEDICAL | FOUNDATION

Answers to Sample Paper | 1 Year Medical

Sample Paper - III

PHYSICS		CHEMISTRY		BIOLOGY			
1.	(B)	31.	(D)	61.	(D)	91.	(A)
2.	(B)	32.	(C)	62.	(A)	92.	(D)
3.	(B)	33.	(D)	63.	(C)	93.	(A)
4.	(C)	34.	(D)	64.	(C)	94.	(D)
5.	(B)	35.	(B)	65.	(C)	95.	(C)
6.	(A)	36.	(D)	66.	(C)	96.	(C)
7.	(D)	37.	(D)	67.	(D)	97.	(D)
8.	(A)	38.	(C)	68.	(C)	98.	(C)
9.	(D)	39.	(C)	69.	(A)	99.	(D)
10.	(A)	40.	(C)	70.	(A)	100.	(C)
11.	(C)	41.	(B)	71.	(D)	101.6	(C)
12.	(C)	42.	(B)	-72.	(C)	NCE102.	(A)
13.	(D)	43.	(C)	73.	(A)	103.	(C)
14.	(B)	44.	(C)	74.	(D)	104.	(C)
15.	(B)	45.	(B)	75.	(C)	105.	(B)
16.	(C)	46.	(A)	76.	(A)	106.	(B)
17.	(D)	47.	(A)	77.	(D)	107.	(D)
18.	(C)	48.	(D)	P. 78.	(C)	108.	(B)
19.		49.	(D)	79.	(B)	109.	(A)
20.	(C)	50.	(D)	80.	(B)	110.	(C)
21.		51.	(C)	81.	(A)	111.	(C)
	(C)	52.	(B)	82.	(B)	112.	(C)
	(C)	53.	(A)	83.	(B)	113.	(C)
	(B)	54.	(C)	84.	(A)	114.	(D)
	(A)	55.	(C)	85.	(D)	115.	(C)
	(C)	56.	(D)	86.	(D)	116.	(A)
	(D)	57.	(C)	87.	(A)	117.	(B)
	(B)		(C)	88.	(A)	118.	(D)
	(C)		(B)	89.	(D)	119.	(D)
30.	(A)	60.	(C)	90.	(B)	120.	(A)

34 YEARS LEGACY

Over the last 3 decades, Vidyamandir Classes (VMC) has designed, delivered, innovated, and perfected the art and science of teaching. VMC provides guidance to students for excelling in engineering (JEE), medical (NEET) entrance exams and other competitive exams like NTSE, KVPY, Olympiads etc.

IIT JEE | MEDICAL | FOUNDATION

VMC has produced 17000+ IITians till date

55+\% Success Rate in NEET

[^0]: 90 End of Sample Paper | 1 Year Medical | Paper III \& \& \&

