

National Admission Test

HEAD OFFICE: Aggarwal Corporate Heights, 3rd Floor, Netaji Subhash Place, Opp. Wazirpur Depot, Pitampura, Delhi. Ph.: (011) 45221191-93

Sample Paper - 1 Year Program

Admission & Scholarship Test | Medical

Duration : 3.0 Hrs

Maximum Marks: 480

PAPER SCHEME :

- The paper contains 120 Objective Type Questions divided into three sections: Section I (Physics), Section II (Chemistry) and Section III (Biology).
- Section I and II contain 30 Multiple Choice Questions each and Section III contains 60 questions. Each question has 4 choices (A), (B), (C) and (D), out of which **ONLY ONE CHOICE is correct**.

MARKING SCHEME :

• For each question in Section-I, II and III, **4 marks** will be awarded for correct answer and **-1 negative marking** for incorrect answer.

GENERAL INSTRUCTIONS :

- For answering a question, an **ANSWER SHEET (OMR SHEET)** is provided separately. Please fill your **Name**, **Roll Number, Seat ID, Date of Birth** and the **PAPER CODE** properly in the space provided in the **ANSWER SHEET.** IT IS YOUR OWN RESPONSIBILITY TO FILL THE OMR SHEET CORRECTLY.
- A blank space has been provided on each page for rough work. You will not be provided with any supplement or rough sheet.
- The use of log tables, calculator and any other electronic device is strictly prohibited.
- Violating the examination room discipline will immediately lead to the cancellation of your paper and no excuses will be entertained.
- No one will be permitted to leave the examination hall before the end of the test.
- Please submit both the question paper and the answer sheet to the invigilator before leaving the examination hall.

				PARI -	I (PHYSI	CS)		
1.	vertical				•			nother stone is projecte Il cross each other after
	(A)	1 s	(B)	2 s	(C)	3 s	(D)	4 s
•		accelerates from ome to rest. The			stant rate	α and then it re	etards at t	he constant rate β for tin
	(A)	α/β	(B)	β/α	(C)	$lpha^2$ / eta^2	(D)	β^2 / α^2
	in a, b a	eriment measure & c are $\pm 1\%$, ± 3 $\pm 13\%$	% and ± 2		the perc		x can be:	t^3 . If the percentage erro $\pm 1\%$
	(A)		(B)		(C)		(D)	
		on zero vectors					•	
	(A)	0°	(B)	60°	(C)	90°	(D)	180°
	•	s. If one wants	•				•	m/s, comes to rest after locity of 4 m/s, the for
	(A)	zero	(B)	2 N	(C)	4 N	(D)	8 N
							-	force of 200 N acts on t acceleration of the 20 l
	(A)	that instant is: 4 m/s ² 12 m/s ²	(B) (D)	10 m/s ² none of these	Cla	SSes	10 kg 00	ひひ 20 kg
	(A)	4 m/s^2 12 m/s ²	(D)	none of these	20 kg alo	FOUN-	10 kg 00	20 10
	(A) (C) A force	4 m/s^2 12 m/s ²	(D)	none of these			llo kg or	20 10
	(A) (C) A force	4 m/s^2 12 m/s ²	(D)	none of these	20 kg alc (C)	bing the x -axis,	JIO kg OO displaces (D)	$\frac{200 \text{ kg}}{200 \text{ kg}} \xrightarrow{200 \text{ N}}$ it from x = 2m to x = 6 86 J
	 (A) (C) A force The wo (A) Two rate such the 	4 m/s^{2} 12 m/s^{2} 12 m/s^{2} of (5 + 3x) N, a rk done by the formula 20 J constant of mass of ma	(D) acting on force is: (B) ssees m ₁ ar a complet	none of these a body of mass 48 J and m ₂ are movin the circle in the s	(C) ng in circ	68 J les of radii r1 a	displaces (D) nd r2 resp	it from $x = 2m$ to $x = 6$ 86 J sectively. Their speeds a
	 (A) (C) A force The wo (A) Two rate such the 	4 m/s^{2} 12 m/s^{2} of (5 + 3x) N, a rk done by the f 20 J cing cars of mass at each makes a	(D) acting on force is: (B) ssees m ₁ ar a complet	none of these a body of mass 48 J and m ₂ are movin the circle in the s	(C) ng in circ	68 J les of radii r1 a	displaces (D) nd r2 resp	it from $x = 2m$ to $x = 6$ 86 J sectively. Their speeds a
	 (A) (C) A force The wo (A) Two rate such the first care (A) A solid 	4 m/s^{2} 12 m/s^{2} 20 J 12 m^{2} 12 m^{2}	 (D) acting on force is: (B) sses m₁ at a complet a complet<td>none of these a body of mass 48 J and m₂ are movin the circle in the st is: $r_1 : r_2$ I radius 3 cm is</td><td>(C) ng in circ same len (C) s rotating</td><td>68 J les of radii r₁ a gth of time. Th 1 : 1 ; about an axis</td><td>displaces (D) and r₂ resp are ratio of (D)</td><td>it from $x = 2m$ to $x = 6$ 86 J sectively. Their speeds a f the angular speed of t $m_1 r_1 : m_2 r_2$</td>	none of these a body of mass 48 J and m ₂ are movin the circle in the st is: $r_1 : r_2$ I radius 3 cm is	(C) ng in circ same len (C) s rotating	68 J les of radii r ₁ a gth of time. Th 1 : 1 ; about an axis	displaces (D) and r ₂ resp are ratio of (D)	it from $x = 2m$ to $x = 6$ 86 J sectively. Their speeds a f the angular speed of t $m_1 r_1 : m_2 r_2$
	 (A) (C) A force The wo (A) Two rate such the first care (A) A solid 	4 m/s^2 12 m/s^2 20 J 12 m^2 12 m^2 12 m^2 12 m^2	 (D) acting on force is: (B) sses m₁ at a complet a complet<td>none of these a body of mass 48 J and m₂ are movin the circle in the st is: $r_1 : r_2$ I radius 3 cm is</td><td>(C) ng in circ same len (C) s rotating</td><td>68 J les of radii r₁ a gth of time. Th 1 : 1 ; about an axis</td><td>displaces (D) and r₂ resp are ratio of (D)</td><td>it from $x = 2m$ to $x = 6$ 86 J sectively. Their speeds a f the angular speed of t $m_1 r_1 : m_2 r_2$</td>	none of these a body of mass 48 J and m ₂ are movin the circle in the st is: $r_1 : r_2$ I radius 3 cm is	(C) ng in circ same len (C) s rotating	68 J les of radii r ₁ a gth of time. Th 1 : 1 ; about an axis	displaces (D) and r ₂ resp are ratio of (D)	it from $x = 2m$ to $x = 6$ 86 J sectively. Their speeds a f the angular speed of t $m_1 r_1 : m_2 r_2$
	 (A) (C) A force The wo (A) Two radius such the first care (A) A solid angular (A) A flywing 	4 m/s ² 12 m/s ² 12 m/s ² 12 m/s ² 12 m/s ² 12 m/s ² 12 m/s ² 13 m/s ² 14 m/s ² 20 J 20 J 20 J 20 J 21 m/s ² 20 J 21 m/s ² 21 m	 (D) acting on force is: (B) sses m₁ are a completed a comp	none of these a body of mass 48 J and m ₂ are movin the circle in the st is: $r_1 : r_2$ I radius 3 cm is kinetic energy 90 J	(C) ng in circ same len (C) s rotating of rotatic (C) disc of ra	68 J les of radii r ₁ a gth of time. Th 1 : 1 about an axis n is: 910 J dius 1 m and n	displaces (D) and r ₂ resp ne ratio of (D) passing t (D) mass 2 kg	it from $x = 2m$ to $x = 6$ 86 J bectively. Their speeds a f the angular speed of t $m_1 r_1 : m_2 r_2$ through its centre with 4500 J . The work which must

- The value of acceleration due to gravity on the surface of the earth is g. If the diameter of the earth 11. becomes double of its present value and its mass remains unchanged, the value of acceleration due to gravity on the surface of the earth would become:
 - g/4 **(A)** g/2 **(B) (C) (D)** 2g 4g

Imagine a light planet revolving around a very massive star in a circular orbit of radius R with period T. If 12. the gravitational force of attraction between the planet and the star is proportional to $R^{-5/2}$, then T^2 is proportional to:

- (C) $R^{3/2}$ $R^{7/2}$ R^{3.75} R^3 **(D) (B)** (A)
- 13. Two wires of the same material have diameters in the ratio 2 : 1 and lengths in the ratio 1 : 2. If they are stretched by the same force, their elongations will be in the ratio:

(A) 8:1 **(B)** 1:8**(C)** 2:1**(D)** 1:4

- A mercury drop of radius 1 cm is sprayed into 10^6 drop of equal size. If the surface tension of mercury is 14. 35×10^{-3} N/m. the energy expended is
 - **(B)** $8.7 \times 10^{-3} \text{ J}$ (C) $4.35 \times 10^{-2} \text{ J}$ $4.35 \times 10^{-3} \text{ J}$ (D) $8.7 \times 10^{-2} \text{ J}$ **(A)**
- A lead bullet strikes a steel armour plate with a velocity of 300 m/s and is completely stopped. If the heat 15. produced is shared equally between the bullet and the target, the rise in the temperature of the bullet is (specific heat of lead 0.03 cal/g°C)
 - **(A)** 89.3°C

(B)

49.3°C

- **(C)**
- 357.2°C 178.6°C

Oxygen and hydrogen gases are at the same temperature. The ratio of the average kinetic energy of an 16. . oxygen molecule and that of a hydrogen molecule is:

(B) 1 1/4(A) 16 Δ **(C) (D)** An ideal gas is taken around the cycle ABCA as shown in the PV 17. diagram. The net work done by the gas during the cycle is: JEE | MEDIC(B)- 16 PV **(A)** 12 PV 3 PV **(C)**

A piston of cross-sectional area 100 cm² is used in a hydraulic press to exert a force of 10⁷ dynes on the 18. water. The cross-sectional area of the other piston which supports a truck of mass 2000 kg is:

 $9.8 \times 10^2 \text{ cm}^2$ (A) **(B)** $9.8 \times 10^3 \text{ cm}^2$ $1.96 \times 10^3 \text{ cm}^2$ $1.96 \text{ x} 10^4 \text{ cm}^2$ **(D) (C)**

19. The weight of a body in air is 100 N. How much will it weigh in water, if it displaces 400 cc of water? 94 N 98 N (A) 90 N **(B) (C) (D)** none of these.

- 20. A body falling freely on a planet covers 8 m in 2 s. The time period of a one metre long simple pendulum on this planet will be:
 - (A) 1.57 s **(B)** 3.14s **(C)** 6.28 s **(D)** none of these.
- 21. The vertical extension in a light spring by a weight of 1 kg, in equilibrium, is 9.8 cm. The period of oscillation of the spring, in seconds, will be:

 $2\pi/10$ (A) **(B)** $2\pi/100$ **(C)** 20π **(D)** 200π

A progressive wave of frequency 500 Hz is travelling with a speed of 350 m/s. A compressional maximum 22. appears at a place at a given instant. The minimum time interval after which a rarefaction maximum occurs at the same point is: 1/250 s 1/1000 s **(A) (B)** 500 s **(C) (D)** 1/350 s A stretched string of length 2 m vibrates in 4 segments. The distance between consecutive nodes is: 23. 0.5 m **(B)** 0.25 m **(C)** 1.0 m **(D)** 0.75 m (A) 24. An aeroplane is flying horizontally with a velocity of 600 km/h at a height of 1960 m. When it is vertically at a point A on the ground, a bomb is released from it. The bomb strikes the ground at point B. The distance AB is: **(A)** 1200 m **(B)** 0.33 km **(C)** 3.33 km **(D)** 33 km The range of a particle when launched at an angle of 15° with the horizontal is 1.5 km. What is the range of 25. the projectile when launched at an angle of 45° to the horizontal: (A) 1.5 km **(B)** 3.0 km **(C)** 6.0 km (D) 0.75 km On heating a liquid of coefficient of cubical expansion α in a container having coefficient of linear 26. expansion $\alpha/3$, the level of liquid in the container will: rise or fall depending on the density of the liquid. **(A)** rise **(B) (C) (D)** A black body at 227°C radiates heat at the rate of 5 cal/cm²/s. The rate of heat radiated in cal/cm²/s at 27. DICAP | FOUND 727°C is: 80 (B) (A) 40 **(D)** 240 Ship A is traveling with a velocity of 5 km/h due east. A second ship is heading 30° east of north. What 28. should be the speed of second ship if it is to remain always due north with respect of the first ship? 10 km/h 7 km/h **(A) (B)** 9 km/h **(C)** 8 km/h **(D)** A certain force applied to mass m_1 gives it an acceleration of 10 m/s². The same force applied to mass m_2 29. gives it an acceleration of 15 m/s². If the two masses are joined together and the same force is applied to the combination, the acceleration will be: 6 m/s^2 **(B)** 3 m/s^2 (C) 9 m/s^2 **(D)** 12 m/s^2 **(A)** 30. The moment of inertia of a ring about an axis passing through its centre and perpendicular to its plane is 200 g-cm^2 . Its moment of inertia about a diameter is: 100 g-cm^2 300 g-cm^2 400 g-cm^2 **(A) (B)** 200 g-cm^2 **(C) (D)**

				PART - II (CHEMIS	TRY)		
31.	Total nu	mber of protons	in 10 g	CaCO ₃ are:				
	(A)	4.011×10 ²⁴	(B)	1.0478×10^{24}	(C)	3.0115×10 ²⁴	(D)	7×10^{24}
32.	Volume 0.2 N wi		NTP)	required to b	ring do	wn the norma	lity of	30cc., $1N$ H ₂ SO ₄ to
	(A)	1 litre	(B)	0.62 litre	(C)	0.54 litre	(D)	1.91 litre
33.	The total are:	l number of spe	ectral line	es emitted durin	g the tra	nsition of an ele	ectron fr	om 5th shell to 2nd shell
	(A)	11	(B)	12	(C)	8	(D)	6
34.	Maximu	m covalency of	N and B	respectively are				
	(A)	5, 3	(B)	3, 1	(C)	3, 3	(D)	4, 4
35.	•			1	re of 1at	m, the system v	olume c	hanges from 3 litre to 10
		e change in inter 993 kJ	rnal ener	gy will be 4 kJ	(C)	– 6 kJ	(D)	0.29 kJ
26	(A)						(D)	
36.	_		-					$CH_3COOH = 1.8 \times 10^{-5}$
	(A)	3.74	(B)	5.04	(C)	4.74	(D)	5.26
37.	Which o		carbocat	ions is the least s	stable?	-mal		
	(A)	$C_6H_5CH_2$			(B)	$p - O_2 N - C_6 H$	H ₄ – CH	2980
	(C)	$p - CH_3O - C$	$_{6}H_{4} - CH_{4}$	H ₂	(D)	$p = Cl - C_6H_4$	$-\overset{+}{\mathrm{CH}}_{2}$	
38.	Which o	f these is aroma	tic?		210	Cycloheptadie	TIO	
	(A)	Cyclopentadie	enyl catio		(B)	Cycloheptadie	nyl catio	on
	(C)	Cyclopentadie	enyl anio	n MEDI	(D)	All of these		
39.	The com			wer the Lassargh	ne's Test	is		
	(A)	Aniline	(B)	Glycine	(C)	Hydrazine	(D)	Urea
40.	-			no isomeric deri		-		
	(A)	1	(B)	2	(C)	3	(D)	None of these
41.		n gas can be ma		red by	(D)	т,		
	(A) (C)	Bosch process Electrolysis of			(B) (D)	Lane's process All of these	5	
40		-		1.4 1.1.1 .1				0
42.	What fra		ilar weig	ht, would be the	equivale	-	$_{3}(PO_{4})_{2}$	
	(A)	$\frac{1}{2}$	(B)	$\frac{1}{6}$	(C)	$\frac{1}{3}$	(D)	$\frac{1}{4}$
43.	The tota	l number of ang	ular nod	es in the 3p orbit	al are:	-		
	(A)	0	(B)	1	(C)	2	(D)	3

44.	The out	er most electron	ic config	guration of an el	ement is	$[Ar]3d^{7}4s^{2}$. T	he atom	ic number of an element
	lying jus	st below this eler	nent in i	ts group will be				
	(A)	40	(B)	45	(C)	49	(D)	54
45.	The hyb	ridization of Xe	in XeO ₂	$_{2}F_{2}$ is				
	(A)	sp ³	(B)	sp ³ d	(C)	sp^3d^3	(D)	$sp^{3}d^{2}$
46.	Which o	of the following i	s diamag	gnetic?				
	(A)	O ₂	(B)	O_2^+	(C)	O_2^{-}	(D)	O ₂ ²⁻
47.				- , ,		•		s 2 minutes. It takes 5.65 cular weight of gas (x) is 32
48.	increase equilibri	s to 3 atm wit	h tempo	erature increasin	ng to 25	50 K. The perc	entage	equilibrium the pressure dissociation of PCl_5 at
	(A)	0.2%	(B)	15%	(C)	20%	(D)	70%
49.	Which o	of these has the m	ninimum	(-I) effect?				*
	(A)	$-\overset{+}{N}R_3$	(B)	$-\overset{+}{\mathrm{SR}}_{2}$	(C)	$-\overset{+}{\mathrm{N}}\mathrm{H}_{3}$	(D)	– COOH
50.	nitrogen	at NTP. The per	ogen by rcentage	the Duma's met of N in the comp 11.8 quid NH ₃ may the walue among the	thod, 0.5 pound w	9 gram of an or ill be	ganic co	ompound gave 112 ml of
	(A)	23.7	(B)	11.8		20 UNDA	(D)	4/.5
51.			olve in li	quid NH ₃ may f	from	FOUR		
	(A) (C)	Blue colour so	lutions D)	MEDI	(B)	Bronze colour	solution	S
	(C)	Both (A) and (5)	EI	(D)	None of these		
52.		l having the high HCOOH	-	value among the CH ₃ COOH		-		
	(A)		(B)		(C)	ClCH ₂ COOH	(D)	FCH ₂ COOH
53.	The esse (A)	the reaction sh		asibility of a read	ction is t	hat		
	(A) (B)			s must be larger t	than that	of reactants		
	(C)		-	companied with				
	(D)	the reaction ha	s to pos	sess high activati	ion energ	gy		
54.		nl 0.1 M H ₂ SO ₄ mality of the res			3 are mix	ked together and	final vo	plume made up to 500 ml
	(A)	0.02	(B)	0.04	(C)	0.08	(D)	0.06

55.				Cl ₅ , the total press ne equilibrium con	•	•		0 atmosphere when 50 % nosphere is
	(A)	0.25	(B)	0.33	(C)	1.00	(D)	0.5
56.		piece of copper v consequence of	vire is in	mmersed in a solu	ution of	aqueous silver r	nitrate, tl	he solution becomes blue.
	(A)	oxidation of sil	ver		(B)	oxidation of co	opper	
	(C)	formation of a	copper	complex	(D)	reduction of co	opper	
57.	The dens	sity of neon will	be high	est at				
	(A)	STP			(B)	0°C, 2 atmospl	here	
	(C)	273°C, 1 atmos	sphere		(D)	273°C, 2 atmo	sphere	
58.	The sma	llest ion among t	he follo	owing is				
	(A)	Na ⁺	(B)	Al ⁺³	(C)	Mg^{+2}	(D)	Si ⁺⁴
59.	An elem	ent in +3 oxidation	on state	has the electronic	c config	uration [Ar]3d ³ .	Its atom	ic number is
	(A)	24	(B)	23	(C)	22	(D)	21
60.	The ome	ount of K Cr O	(Equiv	alent Mass $= 40.0$	(1 q) req	uired to prepare	100 ml	of its 0.05 N solution is
00.		,	· -					
	(A)	2.9424 g	(B)	0.4904 g PART - III	(C)	1.4712 g	(D)	0.2452 g
61.	Accordin	ng to ICBN the n	ame of	the class ends with	-	ana		986
	(A)	—phyceae	(B)	—opsida	(C)	—eae	5\(b) ^E	Both (A) and (B)
62.	In the hi	erarchial classific	cation, t	he number of obl	igate tay	250		4
	(A)	7	(B)	he number of obl	(C)	6 INDA	(D)	12
63.	Virus en	velope is known	as:		. NL	FOU		
	(A)	Capsid	(B)	Peplos EDIG	(C)	Nucleoprotein	(D)	Core
64.	The mo		karvote	s helpful to hur	nans in	making curd f	rom mi	lk and in production of
04.		tics are the one ca			lialis ili	making cure i		ik and in production of
	(A)	Chemosyntheti	c autotr	ophs	(B)	Heterotrophic	bacteria	
	(C)	Cyanobacteria			(D)	Archaebacteria	ı	
65.	Which o	of the following a	re likely	y to be present in	deep sea	a water?		
	(A)	Eubacteria			(B)	Blue-green alg	ae	
	(C)	Saprophytic fur	ngi		(D)	Archaebacteria	ı	
66.	Cyanoba	acteria differs from	m bacte	eria in many respe	ects in			
	(1)	Complete abser	nce of f	lagella	(2)	Presence of bo	th PS I,	PS II
	(3)	Photosynthesis	is anox	ygenic	(4)	Carotene and C	Chloroph	nylls are present
	(A)	1, 2, 3 are corre	ect (B)	2, 3 are correct	(C)	2, 3, 4 are corr	ect	(D) 1, 2, 4 are correct

67.	Phycoco	olloid algin occu	rs in							
	(A)	Cytoplasm of	red algae	e (B)	Cell w	ell of bro	own alg	ae		
	(C)	Cell wall of re	ed algae	(D)	Cytop	lasm of b	orown a	lgae		
68.	In Chlar	<i>nydomonas</i> , me	iosis occu	urs in						
	(A)	Gamete	(B)	Zygote (C)	Sporo	gonium	(D)	Zoosp	oore	
69.	A protha	allus is								
	(A)	A structure in	pteridop	hytes formed be	efore the	thallus de	evelops			
	(B)	A sporophytic	e free livi	ng structure for	med in so	ome pteri	dophyte	es		
	(C)	A gametophy	tic free li	ving structure fo	ormed in	some pte	ridophy	ytes		
	(D)	A primitive st	ructure for	ormed after fert	ilization	in some p	oteridop	hytes.		
70.	Select a	n incorrect state	ment.							
	(A)	In majority of	of the di	cotyledonous p	olants, th	e direct	elonga	tion of	the radicle	leads to the
		formation of p	primary r	oot.						
	(B)	Tap root syste	em is seer	n in the mustard	plant.					
	(C)	In some plant	s, like gra	ass and banyan	tree, adve	entitious	roots ar	e not for	und.	
	(D)	In monocotyle	edonous j	plants, the prima	ary root i	s short liv	ved.			
71.	Given b	elow are the pai	rs of plar	its with sub-aeri	ial stems.	Find the	dissim	ilar pair	w.r.t. the m	odification.
	(A)	Mint, Jasmine	e	(B)	Pistia,	Eichhor	nia			
	(C)	Banana, Grass	5	(D)	Both ((A) & (B)	h a		- t	
72.		nany of given p					and the second se	SINCE		_
	Alstonia	, Mustard, Chin	a rose, G	uava, Tomato,	Chilli, <i>Cu</i>	ilotropis,	Sunflo	wer, Ne	rium, Petun	ia
	(A)	Six	(B)	Seven	(C)	Five	NDA	(D)	Eight	
73.	Which t	ype of infloresc	ence is sh	own below?		FOU			n 4	
	(A)	Racemose		uava, Tomato, Seven town below? (B) (D) e group of cells	Cymo	se	Ke		2	
	(C)	Cyathium		(D)	Hypar	ıthodium	3	Y		
74.	A meris	tem may be defi	ined as th	e group of cells	which					
	(A)	Does not divi		8 1						
	(B)	Conserve foo	d							
	(C)	Divide contin	uously to	give rise to new	v cells					
	(D)	Elongate,matu	are and a	dd to the group	of cells					
75.	Parench	ymatous tissue i	is the seat	t of						
	(A)	Photosynthesi	s		(B)	Storage	e of foo	d materi	ials	
	(C)	Secretion and	excretion	1	(D)	All of t	the abov	ve		
76.	Layer of	cells between e	endoderm	is and vascular	bundles	is called				
	(A)	Epidermis	(B)	Pericycle	(C)	Hypod	ermis	(D)	Pith	

- 77. In dicot stem, the secondary growth takes place by:
 - Primary cambium (A)
 - **(B)** Secondary cambium
 - **(C)** Development of cambium in stele region
 - **(D)** Development of cambium in stele and in the cortical region
- 78. Which of the following is not a role of water?
 - Essential for all physiological activities of plants. (A)
 - **(B)** Acts as an poor solvent
 - Helps in the uptake and distribution of mineral nutrients and other solutes required for growth **(C)** and development.
 - **(D)** Plays a key role in photosynthesis and acts as a source of oxygen.
- 79. Select incorrect statement for diffusion?
 - Larger the difference in concentration, slower is the flow of molecules. (A)
 - **(B)** Diffusion is more rapid in gases than in liquids
 - **(C)** When there is no net movement of molecules, a state of equilibrium is reached
 - **(D)** Diffusion is a random movement of molecules
- 80. The inner wall of each guard cell, towards the pore or stomatal aperture, is:
 - (A) Thick and elastic **(B)** Thin and elastic
 - SINCE 1986 Thick and inelastic Thin and inelastic **(C) (D)**
- Most minerals must enter the root by active absorption because: 81.
 - minerals are present in the soil as charged particles which cannot move across cell membranes (A)
 - the concentration of minerals in the soil is usually lower than the concentration of minerals in the **(B)** This needs energy in the form of ATP CALLEO
 - **(C)** JEEIME
 - All of these **(D)**
- Mineral ions in plants are: 82.

(A)

- Never remobilised **(B)** Frequently remobilised
- **(C)** Always remobilised **(D)** Remobilised in the form of inorganic ions

83. Nickel is an essential part of which of the following enzymes:

- (A) Urease (B) Nitrogenase **(C)** Nitrate reductase **(D)** PEP carboxylase
- 84. During active intake of minerals in first phase:
 - (A) An initial rapid uptake of ions into the free space occurs
 - **(B)** The ions are taken slowly into the inner space
 - **(C)** The ions are taken rapidly into the inner space
 - **(D)** The ions are taken slowly into the outer space

85.	The foll	owing processes (occur during pl	hotosynth	esis:			
	(I)	Reduction of ca	arbon dioxide	(II)	The sp	litting of water		
	(III)	The synthesis o	of glucose	(IV)	Forma	tion of oxygen g	gas	
	(V)	Formation of A	TP					
	Which o	ne of the followin	ng combinatior	ns is corre	ect for th	e light phase?		
	(A)	I, II and III	(B) III, IV	/ and V	(C)	I, III and IV	(D)	II, IV and V
86.	Stroma l	amellae are chara	acterised by all	, except				
	(A)	Presence of PS-	-I		(B)	Site of cyclic	photopho	osphorylation
	(C)	Perform photos	synthesis at wa	velength	>680 nm	l		
	(D)	Presence of NA	DP ⁺ reductase					
87.	First car	bohydrate formed	l in dark reaction	on is:				
	(A)	PGAL		(B)	DHAP	1		
	(C)	Erythrose 4 PO	4	(D)	Xylulo	ose 5 PO ₄		
88.	Protein i	s mostly the resp	iratory substrat	te in:				
	(A)	Protoplasmic re	espiration	(B)	Floatin	ng respiration		
	(C)	Anaerobic resp	iration	(D)	Respir	ation of oily see	eds	
89.	Glycoly	sis is also called					4	r
07.	(A)	EMP Pathway		(B)	Amphi	ibolic pathway	no	
	(C)	Triosis		(D)		A) and (C)	- . ~ E '	_\ 986
90.			complexes occu			chondria?	ndi	
	(A)	4	(B) 3		(C)	550	(D)	2 oteins to their destination
91.	The mai	n organelle invol	ved in modific	ation and	routing	of newly synth	esized pr	oteins to their destination
<i>)</i> 1.	is:	n organetic invol					csized pi	otems to their destination
	(A)	Mitochondria	(B) Endo	plasmic r	eticulum	l		
	(C)	Lysosome	(D) Ribos	somes				
92.	The cent	ral part of the pro	ovimal region (of the	is n	roteinaceous an	d called '	"hub" which is connected
12.		ules of the periph	-			iotemaceous an	u cancu	nuo winen is connected
	(A)	Centromere	(B) Nucle	-	(C)	Centrosome	(D)	Centriole
02	Stata th	and manage of an	asifia plasas	Intendo	uhlat ha	idaa aantuul		
93.		ese names at sp nd Radial spoke r	-	- Interdo	ublet br	idge, central		(I)
		-	- ·				d	Contraction of the second seco
	(A) (D)	(V), (IV) and (V					(VI) - O	
	(B)	(II), (VI) and (V	,				ð	
	(C)	(II), (III) and (\	,				1	
	(D)	(III), (VI) and (V)				(V)	

94.	The endo (A) (C) (D)	omembranous sy ER, GB, lysoso Mitochondria, ER, GB, Mitoo	ome and chlorop	vacuoles last and peroxiso	(B) omes	ER, GB, centr	ioles and	d lysosome
95.				wards the oppos he centromere in	-	s brought about	by disso	olution of microtubules of
	(A)	Prophase	(B)	Metaphase	(C)	Anaphase	(D)	Telophase
96.	Chromos	somes cluster at	opposite	spindle poles a	nd their	identity is lost as	s discrete	e elements in
	(A)	Anaphase	(B)	Anaphase II	(C)	Telophase	(D)	both (A) and (B)
97.	Fill in th	e blank A & B i	n the giv	en statement:				
	I			protein in anim	al world	l andII	_ is the	most abundant protein in
	the whol	e of the biospher I	re.			Ι	II	
	(A)	RUBISCO	Collag	gen	(B)	Collagen	Elasti	n
	(C)	Fibrin	Collag	gen	(D)	Collagen	RUBI	SCO
98.	The state	ement which is n	ot corre	ct amongst the f	ollowing	; is:		
	(A)	Starch is a hon	nopolym	er of glucose co	ntaining	amylose and an	nylopect	in.
	(B)	Maltose is a di	sacchari	de formed from	two glue	cose units.	nu	
	(C)	Cellulose is a t	risaccha	ride formed fror	n 3 units	s of glucose.	SINCE	1980
	(D)	Inulin is a poly	mer of t	fructose.		<u>cs</u> es	5	
99.	Arrange	the steps of the	catalytic	cycle of an enzy	yme acti	on in the correct	descend	ling order:
	1.	Active site of t	he enzy	me breaks the ch	nemical l	oonds of the sub		
	2.	The enzyme sh	hape is a	ltered. the active site of	CAL			
	3.	The substrate f	its into t	the active site of	the enzy	yme.		
	4.	Enzyme molec	ule relea	ases the product	and is fr	reed to bind anot	her mole	ecule of the substrate.
	(A)	4-1-3-2	(B)	4-1-2-3	(C)	4-3-1-2	(D)	4-2-1-3
100.	Which of	f the following a	nimal g	roups is entirely	aquatica	2		
	(A)	Mollusca and	Cnidaria		(B)	Ctenophora ar	nd Mollu	Isca
	(C)	Echinodermata	and Cte	enophora	(D)	Annelida and	Echinoc	lermata
101.	which s	hows the corr	ect ider	-	he strue	an animal. Sele cture which is		
	(A)	1	(B)	2				<u> </u>
	(C)	3	(D)	4				4

102. Characteristics of smooth muscle fibres are

102.		
	(A)	Spindle-shaped, unbranched, unstriated, uninucleate and involuntary
	(B)	Spindle-shaped, unbranched, unstriped, multinucleate and involuntary
	(C)	Cylindrical, unbranched, unstriped, multinucleate and involuntary
	(D)	Cylindrical, unbranched, striated, multinucleate and voluntary
100	T 1	
103.	•	yme enterokinase:
	(A)	Stimulates release of pancreatic secretions
	(B)	Activates protein digesting enzymes
	(C)	Functions in lipid digestion
	(D)	Functions in carbohydrates digestion
104.	One of th	he following is not an enzyme of digestive system:
	(A)	Trypsin (B) Amylase (C) Enterogastrone (D) Enterokinase
105.	Function	ns of the stomach include all of the following, except:
	(A)	Churning of ingested food (B) Denaturation of proteins
	(C)	Initiation of protein digestion (D) Absorption of proteins
106.		ommon feature between human trachea & cockroach trachea is observed?
100.		
	(A)	Both are paired and unbranched (B) Both are supported by cartilaginous rings
	(C)	Both are non collapsible (D) Both originate from Pharynx
107.	Match th	ne items in column I with column II and choose the correct option: INCE 1986
		Column I Column II
	(i)	ColumnColumnTidal volume(p)Residual volume(q)500mlIRV(r)1100-1200ml
	(ii)	Residual volume (q) 500ml
	(iii) (iv)	IRV (r) 1100-1200ml ERV (s) 1000-1100ml
	(A)	(i) - q, (ii) - s, (iii) - p, (iv) - r (B) $(i) - q, (ii) - p, (iv) - r, (iv) - s$
	(C)	(i) q , (ii) p , (iii) p , (iv) q (i) $-s$, (ii) $-p$, (iii) $-r$, (iv) $-q$ (D) (i) $-q$, (ii) $-r$, (iii) $-p$, (iv) $-s$
108.		e correct statement for human blood?
	(1)	All the WBCs are nucleated in blood vessels
	(2)	All the RBCs are enucleated in blood vessels
	(3)	Rh-antigen is present on the surface of every RBC
	(4) (A)	Antibodies are present in the blood plasma 1, 2, 3, 4 (B) 2, 4 only (C) 1, 2, 4 (D) 1, 2 only
109.	· ·	ven diagram of ECG, T-wave represents:
	(A)	Electrical excitation of atria and systole of ventricle.
	(B)	Depolarization of ventricle and repolarization of atria.
	(C)	Return of the ventricles from excited to normal state and end $\frac{P}{P}$
		of ventricular systole.
	(D)	The beginning of ventricular systole.
	(D)	The beginning of ventricular systole.

110.	All of the	em are characters of r	eptiles, except:			
	(A)	Lizards shed their so	cales as skin cast	(B)	Scutes are pres	sent on their body
	(C)	Heart is three-chaml	bered in all reptiles	(D)	They are poiki	lotherms
111.	Match co	olumn I with column l	Π			
		Column I	Column II			
	(i)	PCT DCT	(p) Reabsorption o		um alastralitas	
	(ii) (iii)	Henle's loop	(q) Reabsorption o (r) Minimum reabs		ium electrolytes	
	(iv)	Collecting duct	(s) Conditional rea		n	
	(A)	(i)-q, (ii)-p, (iii)-s,	(iv)–r	(B)	(i)–p, (ii)–r, (ii	
	(C)	A-q, B-s, C-r, D-p		(D)	A-r, B-s, C-p,	D-q
112.	Which of	f the following forms	thoracic cage of ma	n?		
	(A)	Ribs and sternum		(B)	Ribs and thora	cic vertebrae
	(C)	Ribs, sternum and lu	umbar vertebrae	(D)	Ribs, sternum	and thoracic vertebrae
113.	During th	ne contraction of a ver	rtebrate skeletal mu	scle fibr	e, calcium ions:	
	(A)	break cross bridges	by acting as a cofac	tor in the	e hydrolysis of A	ATP
	(B)	bind with troponin,	changing its shape s	o that m	yosin-binding s	ites on actin are exposed
	(C)	transmit action poter	ntials from the moto	or neuroi	n to muscle fibre	es
	(D)	re-establish the pola	rization of plasma r	nembrar	e following an	action potential
114.	Which of	f the following statem	ents is/ are incorrec	t about <i>i</i>	Periplaneta ame	ericana?, 986
	I.	They are nocturnal of				SINCE
	II.	Its body is segmente	ed and divisible in t	vo regio	ns i.e. head and	abdomen.
	III.	Antennae have sense	ory receptors to mor	nitor the	environment.	TION
	IV.	Head can move in a	ll directions due to t	he prese	ence of flexible	neck.
	The corre	ection option is		AL		
	(A)	ection option is I and IV (B) I passing through the	Only II (C)	Only I	V (D)	II and III
115.	The cana	l passing through the	midbrain is called:			
	(A)	Medulla oblongata	(B)		al aqueduct	
	(C)	Eustachian tube	(D)	Aqueo	us chamber	
116.	Eye lens	is held in the place by	y:			
	(A)	Muscle fibres of iris	(B)	Ligame	ents attached to	the ciliary body
	(C)	A transparent gel ca	lled vitreous humor			
	(D)	Thin watery fluid ca	lled aqueous humor	•		
117.	Which of	f the following is the	function of ear ossic	eles?		
	(A)	To collect the vibrat	ions in the air			
	(B)	To equalise the pres	sures on either sides	s of the e	ear drum	
	(C)	To secrete ear wax				

Vidyamandir Classes | Gurukul for IITJEE & Medical Preparation

118. The ductless glands:

- (A) Produce non-nutrient intercellular messengers
- (B) Found only in non chordates
- (C) Are absent in human body
- **(D)** Are called exocrine glands
- **119.** The two glands located in the neck region are:
 - (A) Thyroid gland and parathyroid gland
 - (C) Adrenal gland and thymus
- **120.** Hypothalamus forms an important link between:
 - (A) Digestive system and nervous system
 - (B) Nervous system and respiratory system
 - (C) Nervous system and endocrine system
 - (D) Integumentary system and reproductive system

- (B) Pituitary gland and pineal gland
- (D) Pineal gland and thyroid gland

Vidyamandir Vidyamandir SINCE 1986 SINCE 1986

୬୬ ୬୬ End of Sample Paper | 1 Year Medical | Paper । ଏ ଏ ଏ

Answers to Sample Paper | 1 Year Medical

Sample Paper – I

PHY	SICS	CHEM	ISTRY		BIOI	JOGY
1.	(A)	31.	(C)	61.	(D)	91. (B)
2.	(B)	32.	(C)	62.	(A)	92. (D)
3.	(A)	33.	(D)	63.	(A)	93. (D)
4.	(C)	34.	(D)	64.	(B)	94. (A)
5.	(C)	35.	(D)	65.	(D)	95. (C)
6.	(A)	36.	(C)	66.	(D)	96. (C)
7.	(C)	37.	(B)	67.	(B)	97. (D)
8.	(C)	38.	(C)	68.	(B)	98. (C)
9.	(A)	39.	(C)	69.	(C)	99. (B)
10.	(C)	40.	(B)	70.	(C)	100. (C)
11.	(B)	41.	(D)	71.	(B)	101. (C)
12.	(B)	42.	(B)	72.	(A)	102. (A)
13.	(B)	43.	(B)	73.	(B)	103. (B)
14.	(A)	44.	(B)	74.	(C)	104.986 (C)
15.	(C)	45.	(B)	75.	(D)	SINC105. (D)
16.	(C)	46.	(D)	76.	(B)	106. (C)
17.	(C)	47.	(B)	77.5	(D)	107. (D)
18.	(D)	48.	(C)	78.	(B)	108. (C)
19.	(D)	49.	(D)	79.	(A)ND	109. (C)
20.	(B)	50.	(A) (C)	80.	(A)	110. (C)
21.	(A)	51.	(C)	CP81.	(D)	111. (C)
22.	(C)	52.	(D)	82.	(B)	112. (D)
23.	(A)	53.	(C)	83.	(A)	113. (B)
24.	(C)	-	(C)	84.	(A)	114. (B)
25.	(B)	55.	(B)	85.	(D)	115. (B)
26. 27	(C)	56.	(B)	86.	(D)	116. (B)
27.	(B)	57.	(B)	87.	(A)	117. (D)
28.	(A)	58. 50	(D)	88.	(A)	118. (A)
29.	(A)	59.	(A)	89.	(D)	119. (A)
30.	(A)	60.	(D)	90.	(C)	120. (C)

Sample Paper - 1 Year Program

Admission & Scholarship Test | Medical

Duration : 3.0 Hrs

Maximum Marks: 480

PAPER SCHEME :

- The paper contains 120 Objective Type Questions divided into three sections: Section I (Physics), Section II (Chemistry) and Section III (Biology).
- Section I and II contain 30 Multiple Choice Questions each and Section III contains 60 questions. Each question has 4 choices (A), (B), (C) and (D), out of which **ONLY ONE CHOICE is correct**.

MARKING SCHEME :

• For each question in Section-I, II and III, **4 marks** will be awarded for correct answer and **-1 negative marking** for incorrect answer.

GENERAL INSTRUCTIONS :

- For answering a question, an **ANSWER SHEET (OMR SHEET)** is provided separately. Please fill your **Name**, **Roll Number, Seat ID, Date of Birth** and the **PAPER CODE** properly in the space provided in the **ANSWER SHEET.** IT IS YOUR OWN RESPONSIBILITY TO FILL THE OMR SHEET CORRECTLY.
- A blank space has been provided on each page for rough work. You will not be provided with any supplement or rough sheet.
- The use of log tables, calculator and any other electronic device is strictly prohibited.
- Violating the examination room discipline will immediately lead to the cancellation of your paper and no excuses will be entertained.
- No one will be permitted to leave the examination hall before the end of the test.
- Please submit both the question paper and the answer sheet to the invigilator before leaving the examination hall.

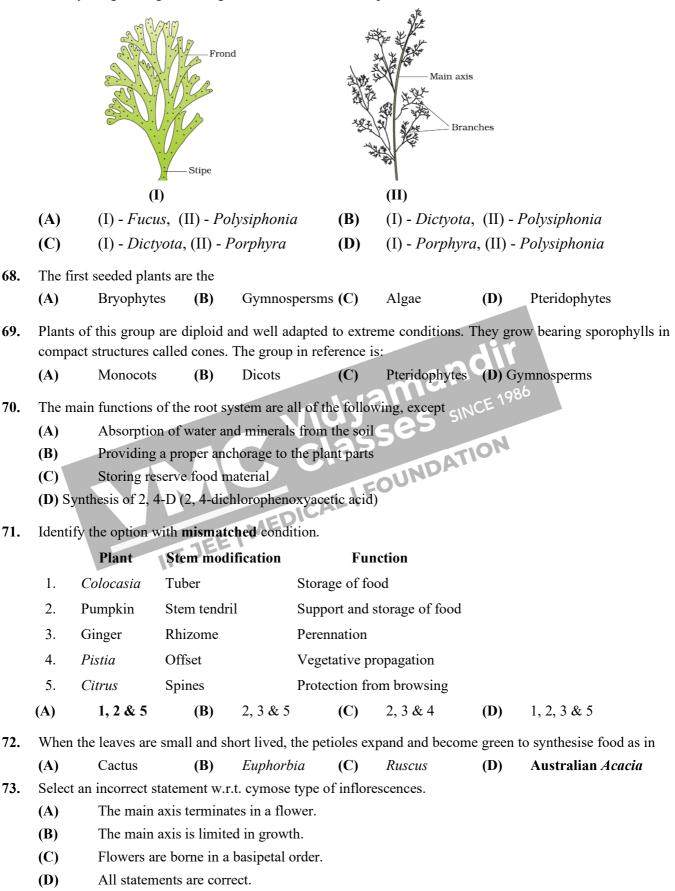
				PART -	I (PHYSI	CS)		
1.		falls from the starting from to	-	ower in 8 s. Ho	w much	time it will ta	ake to cov	er the first quarter of the
	(A)	4 s	(B)	2 s	(D)	1 s	(D)	5 s
2.	•	the 5 th second.		he acceleration of		rticle?	in 3 rd seco	nd. It covers a distance of
	(A)	3 m/s	(B)	5 m/s ²	(D)	8 m/s ²	(D)	10 m/s ²
3.	A body error lin		ly a dista	nce of (13.8 ± 0.13)	2) m in a	time (4.0 ± 0.3)	3) s. The v	relocity of the body within
	(A)	(3.45 ± 0.2) m	ns ⁻¹		(B)	(3.45 ± 0.3)) ms ⁻¹	
	(D)	(3.45 ± 0.4)	ms ⁻¹		(D)	(3.45 ± 0.5)	ms ⁻¹	
4.		rces have magi t is 35 N, their 1			5 and th	e angle betwo	een their	directions is 60°. If their
	(A)	12 N, 20 N	(B)	15 N, 25 N	(D)	18 N, 30 N	(D)	21 N, 28 N
5.		ss of an elevator evator is: $(g = 1)$		kg. When the to		- 21	10	48000 N, the acceleration
	(A)	2 m/s ² upwar	ds		(B)	2 m/s ² dowr	wards 19	36
	(D)	20 m/s ² upwa	ards		(D)	$20 \text{ m/s}^2 \text{ dow}$	vnwards	
6.	string pa shown. The min	assing over a fr The coefficient	rictionles of static that sho	nd 5 kg respectiv s pulley fixed a friction betwee ould be placed 5 kg	t the cor n A and	ner of a table the table is 0.	as .2. 777	C A B 15 kg
				-		C		C C
7.				ly a block of ma cord on block is:		distance d at a	constant	downward acceleration of
	(A)	Mgd/4	(B)	-Mgd/4	(D)	3Mgd/4		(D) -3Mgd/4
8.			^ .					m/s. If the road becomes is μ , then that for the wet
	(A)	μ/2	(B)	μ/3	(D)	2µ/3	(D)	3µ/4
9.	through	its centre. A b	boy of m		nding at	-	-	out a vertical axis passing oves to the centre of the
	(A)	7.5 rpm	(B)	12.5 rpm	(D)	15 rpm	(D)	20 rpm
10.				solid sphere an om rest from the			of the san	ne mass and radius to roll
	(A)	15:14	(B)	$\sqrt{15}:\sqrt{14}$	(D)	14:15	(D)	$\sqrt{14}$: $\sqrt{15}$

Vidyamandir Classes | Gurukul for IITJEE & Medical Preparation

12.	(A)	D / 4						
2.		R/4	(B)	R/2	(D)	3R/4	(D)	none of these
	Two sat	ellites are movi	ng in the	same circular o	rbit arour	nd earth. They n	nust have	same:
	(A)	mass			(B)	angular mom	entum	
	(D)	kinetic energ	у		(D)	speed		
13.	then the verticall	e length of the y is:	wire of	that substance	which w	ill break under	its own	the wire is 3×10^3 kg/m ³ , weight when suspended
	(A)	3.4m	(B)	34 m	(D)	340 m	(D)	None of these.
4.	The ford dynes/cr	•	pull a ci	rcular plate of	radius 5	cm from the su	rface of	water (surface tension 75
	(A)	30 dynes	(B)	60 dynes	(D)	750 dynes	(D)	750π dynes
5.		•						is 35°C. An air bubble of pheric pressure = 10 m of
	water):					1	0	
	(A)	2.0 cm^3	(B)	3.2 cm^3	(D)	5.4cm ³	(D) (E) 198	568.0 cm^3
6.	The pres	ssure of a gas c	ontained	in a closed ves	sel is inc	creased by 0.4 %	% when h	neated by 1°C. The initial
	tempera	ture was:			1a5	30	ION	
	(A)	250 K	(B)	250°C	(D)	500 K D A	(D)	500°C
7.	When a	gas expands ac	liabatical	ly?	AL IF	500 KDA		
	(A)	no energy is 1	required f	or expansion				
	(B)	energy is requ	uired and	it comes from t	the wall o	of the container	of the gas	5
	(D)	internal energ	gy of the	gas is used in do	oing work	ζ.	-	
	(D)	_		energy does no	-			
3.	The pre	ssure in a wate	r tap at t	he base of a bi	uilding is	3×10^6 dvnes	$/cm^2$ and	on its top it is 1.6×10^6
	-		-	lding is approxi	-	5		1
	(A)	7 m	(B)	14 m	(D)	70 m	(D)	140 m
).	A solid	weighs 5 N in a	ir, 4 N in	water and 4.5 M	N in some	e other liquid. T	he specif	ic gravity of the liquid is:
	(A)	0.5	(B)	1.5	(D)	0.9	(D)	None of these
).	A simpl	e harmonic osci	llator has	s amplitude A a	nd time p	eriod T. Its max	kimum sp	eed is:
	(A)	4A/T	(B)	2A/T	(D)	$4\pi A/T$	(D)	$2\pi A/T$
1.	that it e	-	harmon	ic oscillations v			-	little and then released so creased by m, the period
	(A)	4/5	(B)	5/4	(D)	9/16	(D)	25/16

				sses Gurukul	·					
	(A)	4	(B)	32	(C)	8	(D)	64		
32.	The rate	of diffusion of	methane	at a given temp	erature 1	s twice that of a	i gas X. I	The molecular weight of X		
22	(A)	H_2S	(B)	AlCl ₃	(C)	NH ₃	(D)	BF_3		
31.			C C	*				bond pairs of electrons		
				PART - II		-				
	(A)	$(2gl)^{1/2}$	(B)	$(2g/l)^{1/2}$	(D)	$(3gl)^{1/2}$	(D)	$(3g/l)^{1/2}$		
	-	n it hits the floo								
30.				oottom, is held v	retically	and then allow	red to fall	. The linear velocity of its		
	(A)	9.8 N	(B)	0.7 × 9.8 N	(D)	$9.8 \times \sqrt{3}$ N	(D)	$0.7 \times 9.8 \text{ x} \sqrt{3} \text{ N}$		
					-			force on block is:		
29.		e		e	•	e e		with the horizontal. The		
	(D)	$8\sqrt{3}$ m/s at 30	0° with th	ne horizontal	(D)	$8 \sqrt{3}$ m/s at 60)° with th	e horizontal		
	(A)	10 m/s at 30°			(B)	10 m/s at 60°				
				y of the dog relation						
28.						5 m/s and a dog		ng towards the tree with a		
	(A)	E/4	(B)	E/2	(D)	2ENDA	(D)	E/16		
		, the radiated en	-		las					
27.	A black	body at a high	temperat	ure T K. radiate	s energy	at the rate of E	W/m^2 . V	When the temperature falls		
	(A)	1.75s	(B)	2.5s	(D)	3.58	(D)	364.75s		
	many seconds will it lose per day at 35°C? ($\alpha_{\text{steel}} = 11 \times 10^{-6} / ^{\circ}\text{C}$)									
26.	A secor	d's pendulum g	gives corr	rect time at 25°	C. The r	endulum shaft	is thin a	nd is made of steel. How		
	(D)	5:4	(D)	5:2	(D)	5:1	(D)	10:1		
25.	For a pr	ojectile, the rati	o of max	imum height rea	ched to t	the square of fli	ght time	is $(g = 10 \ ms^{-2})$		
	(A)	0.1 km	(B)	1 km	(D)	2 km	(D)	None		
	strike:	r								
24.	An aero	plane flying 49	0 <i>m</i> abo	ve ground level	at 100 ;	m/s, releases a	block. H	How far on ground will it		
	required (A)	for resonance i 25 cm	s: (B)	45 cm	(D)	75 cm	(D)	95 cm		
	• •	•		ne speed of sou	nd in ai	r is 340 m/s, t	hen the 1	ninimum height of water		
23.	A tunin	g fork of frequ	ency 340	Hz is vibrated	just abo	ve a cylindrica	l tube of	length 120 cm. Water is		
	(A)	A/ $\sqrt{2}$, $\omega/2$	(B)	A/ $\sqrt{2}$, ω	(D)	A√2, ω/2	(D)	A $\sqrt{2}$, ω		
	$\pi/2$. The amplitude and frequency of the resultant wave are, respectively:									

22. Two sound waves, each of amplitude A and frequency ω , superpose at a point with a phase difference of


33.	Equal weights of CH_4 and CO_2 are mixed in an empty vessel at 25°C. The fraction of the total pressure exerted by methane is							
	(A)	$\frac{11}{15}$	(B)	$\frac{15}{22}$	(C)	$\frac{15}{11}$	(D)	$\frac{22}{15}$
34.	One graa (A)	m of a metallic o 68	oxide upo (B)	on reduction give 34	es 0.68 g (C)	g of metal. The e 51	equivalen (D)	nt of metal is 17
35.		nbustion, carbo cal and that of Co				-	of for	mation of CO ₂ gas is
	(A)	26.0 Kcal	(B)	94.3 Kcal	(C)	68.3 Kcal	(D)	120.3 Kcal
36.	Structur (A) (C)	e of ammonia is pyramidal tetrahedral			(B) (D)	trigonal plana trigonal-bipyr		
37.	The hyd	rogen ion conce	ntration	of 0.1 N solutior	of CH ₃	COOH , which	is 30% c	lissociated is
	(A)	0.03	(B)	3.0	(C)	0.3	(D)	30.0
38.	At NTP	volume of oxyg	en evolv	ed from 10 ml o	f a 20 vo	olume solution o	f H ₂ O ₂	is
	(A)	20 ml	(B)	200 ml	(C)	100 ml	_{ار} کی) مج	6250 ml
39.	-	nic compound o pound is	n analysi	is gave C = 39.9	%, H = 6	5.79% and $O = 5$	53.4%. T	he empirical formula of
	(A)	CHO ₂	(B)	CH_2O CH ₂ O MEDICA apourization	(C)	C ₂ H ₂ O ₂	(D)	СНО
40.	When a	liquid boils, the	re is:		LIF	001		
	(A)	an increase in	entropy	MEDIC	(B)	a decrease in e	entropy	
	(C)	an increase in	heat of v	apourization	(D)	an increase in	free ener	rgy
41.		cetylene is treate		Br, we get		Etherland have	.:	
	(A) (C)	Methyl bromic Ethyl bromide			(B) (D)	Ethylene bron Ethylidine bro		
42.	Which c	one of the follow	ing has t	he highest dipol	e momei	nt?		
	(A)	AsH ₃	(B)	SbH ₃	(C)	PH ₃	(D)	NH ₃
43.		ubility products are in the orde		Ag ₂ S and HgS a	tre 10^{-31}	, 10^{-44} , 10^{-54} , re	spectivel	y. The solubility of these
	(A)	$Ag_2S > HgS >$			(B)	$HgS > Ag_2S >$		
	(C)	$Ag_2S > CuS >$	_		(D)	$CuS > Ag_2S >$	· HgS	
44.		ve ozonolysis of	نا	ng Zn+ H ₂ O give		Duton 1 4 1	:-1	
	(A) (C)	Butane-1, 4-di Butanoic acid	one		(B) (D)	Butane-1, 4-d Butane	iai	
	-							

45.	•		•	base than its hy s dissolved in wa		ion OH ⁻ . Whic	h of the	e following reactions will
	(A)	2	` '	$H_2O + H_2 + 2e^-$				
	(B)	$\mathrm{H}^{-}(\mathrm{aq}) + \mathrm{H}_{2}\mathrm{C}$	$\rightarrow C$	$H^- + H_2$				
	(C)	$H^- + H_2O$ —	\rightarrow No rea	action	(D)	Na ₂ O is forme	d	
46.	Which o	of these species	is aroma	tic?				
	(A)	\bigcup_{\oplus}	(B)	$\overset{\oplus}{\textstyle{\frown}}$	(C)		(D)	
47.	Carboge	en is a mixture o	f:					
	(A) õ	O ₂ and CO ₂	(B)	O ₂ and CO	(C)	CO and CO ₂	(D)	none of these
48.	Which o	of these carbides	is a met	hanide?				
	(A)	Be ₂ C	(B)	CaC_2	(C)	Mg_2C_3	(D)	Li ₂ C ₂
49.	Which o	of the following	does not	exist in solid sta	ite?			
	(A)	KHCO ₃	(B)	$Ba(HCO_3)_2$	(C)	NaHCO ₃	(D)	K_2CO_3
50.		•	le of a co	ompound C ₆₀ H ₁₂₂		1 4 10=210	dI	
	(A)	842 g			(B)	$1.4 \times 10^{-21} \text{ g}$		36
	(C)	5.025×10^{23} g	;		(D)	$\frac{1}{6.023 \times 10^{23}}$ g	ICE	
51.	The equ	ivalent mass of	NH3 in t	he reaction is	25	17 SES OUNDAT 17	ON	
		$N_2 \longrightarrow 2NH_2$	3			INDAT		
		17	(B)	17		001		17
	(A)	3	(В)	6 EDICA	(C)	1 /	(D)	$\frac{17}{2}$
52.	Aqueou	s solution of wh	ich of th	ese oxychloride	with san	ne concentration	has may	kimum pH?
	(A)	NaClO	(B)	NaClO ₂	(C)	NaClO ₃	(D)	NaClO ₄
53.	Number	of electrons los	t by 2 g	Cl [−] ion during its	s oxidati	on to Cl ₂ is		
	(A)	3.39×10^{22}		6.023×10^{23}			(D)	6.023×10^{22}
	1011				· -	• • • • •		
54.		•	C C	nic compound d	e	•	both ch	lange into
	(A)	Na ₂ S and NaC			(B)	NaSCN		
= =	(C)	Na_2SO_3 and Na_2SO_3		1.:	(D)	Na ₂ S and NaC		· · · · · · · · · · · · · · · · · · ·
55.	3.2×10^{-10}		y of ca	alcium fluoride	in a	saturated solution	on 11 1	ts solubility product is
	3.2×10	$2.0 \times 10^{-4} \text{ mo}$	1/litro		(B)	12.0×10^{-3} mc	1/1:1:1:1:0	
	(A) (C)	$0.2 \times 10^{-4} \text{ mol}$			(В) (D)	12.0×10^{-3} mol/li		
56.				es in gypsum and			uc.	
50.			morecur	es in gypsuin and	-	1		1
	(A)	$\frac{5}{2}$	(B)	2	(C)	$\frac{1}{2}$	(D)	$1\frac{1}{2}$

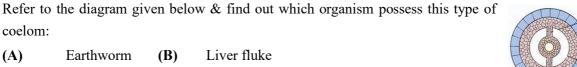
Vidyamandir Classes | Gurukul for IITJEE & Medical Preparation

57.	Idantify	the configuration	on of a tr	ongition motal a	ut of the					
57.	(A)	$1s^2$, $2s^22p^6$, $3s^2$			(B)	$1s^2$, $2s^22p^6$, $3s^2$	$s^2 3 n^6 3 d^{10}$	$4s^24n^1$		
	(C)	$1s^2, 2s^22p^6, 3s^2$	· ·		(D) (D)	$1s^2, 2s^22p^6, 3s^2$	1	· 1		
58.		· · ·	•			gy of Coinage n				
50.	(A)	Cu > Ag > Au	-	ung mst iomza	(B)	cu < Ag < At				
	(C)	Cu > Ag < Au			(D) (D)	Ag > Cu < Au				
59.		of the following		ectrons most eas						
57.	(A)	Mg (g)	(B)	Be (g)	(C)	O (g)	(D)	N (g)		
		_								
60.	In PO ₄		-		ygen atom and $P - O$ bond order respectively are					
	(A)	-0.75, 0.6	(B)	-0.75, 1.0	(C)	-0.75, 1.25	(D)	- 3, 1.25		
				PART - I	II (BIOLC	OGY)				
61.	ICBN st	tand for:								
	(A)	International of	classifica	ation of biologic	al nomer	nclature				
	(B)	International of	class of l	biological nome	nclature					
	(C)	International of	code of b	ootanical nomen	clature		AI			
	(D)	International of	classifica	ation of biologic	al namin	g an				
(\mathbf{a})	·T	1.66					ICE 19	86		
62.		International class of biological nomenclature International code of botanical nomenclature International classification of biological naming differs from 'taxon' due to this being a higher taxonomic category than taxon this being lower taxonomic category than taxon this being the plural of taxon this being the singular of taxon bacteria differ from eubacteria in: Mode of reproduction Mode of nutrition (B) Cell membrane structure (D) Cell shape								
	(A) (D)	this being a hi	igner tax	onomic category	than ta	xon	ION			
	(B)	this being lov	ver taxoi	nomic category	than tax	INDAT				
	(C) (D)	this being the	plural of	r taxon		001				
	(D)	this being the	singular	of taxon						
63.	Archaeb	acteria differ fro	om euba	cteria in:						
	(A)	Mode of repro	oduction		(B)	Cell membrar	ne structi	ure		
	(C)	Mode of nutri	tion		(D)	Cell shape				
64.		of the following								
04.	(A)	Retrovirus	5110 10 5 0		(B)	Polio virus				
	(C)	Tobacco mosa	aic virus			leasles virus				
65.	Five kin	gdom system of	classifi	cation suggested	by R.H.	Whittaker is no				
	(A)	Complexity of	f body o	rganisation	(B)	Presence or al	bsence o	f a well-defined nucleus		
	(C)	Mode of repro	oduction		(D)	Mode of nutri	ition.			
66.	Which o	of the following	granules	functions as sto	orage rese	ervoir for phospl	hate in b	acteria?		
	(A)	Sulphur granu	ıles		(B)	Cyanophycea	n granul	es		
	(C)	Volutin granu	les		(D)	PHB granules	5			

67. Identify the given figures of algae and select the correct option?

74.	Protode	rm and Procam	bium are:						
	(A)	Permanent ti	ssues		(B)	Merist	tematic t	issues	
	(C)	Intercalary n	neristems		(D)	Secon	dary tiss	ues	
75.	Which o	one of the follo	wing is ar	effective tissue	of grow	ng orga	ns with s	ufficien	t elasticity?
	(A)	Parenchyma	(B)	Collenchyma	(C)		nchyma		All the above
76.	Casparia	an strips in end	odermis is	s composed of:					
	(A)	Cellulose	(B)	Pectin	(C)	Suber	in	(D)	Lignin
77.	"Sap wo	ood" is also cal	led						
	(A) Dur	amen	(B) A	lburnum	(C) A	utumn w	vood	(D) Ea	arly wood
78.	Select in	ncorrect statem	ent for wa	ter potential / fr	ee energy	/:			
	(A)	We can mov	e the wate	er up against gra	vity				
	(B)					a measur	re of the	amount	of work (energy) needed
				ne point to the ot					
	(C)	potential is l		ie point where	water po	tential 1	s greater	, to the	other point where water
	(D)	•		rgy to water				0.1.	
79.	Which i	s not a result o	f diffusior	1?		an		CE 198	6
	(A)	Distribution	of water,	gases and solute	s		5 SIN		
	(B)	Supply of ca	rbon diox	ide from atmosp	here to t	ne leave	s	ON	
	 (h) Distribution of which, gales and solutes (B) Supply of carbon dioxide from atmosphere to the leaves (C) Loss of water vapour from leaves to the atmosphere. (D) Transport of photosynthates When turgidity increases within the two guard cells flanking each stomatal aperture or pore, the thin outer 								
	(D)	Transport of	photosyn	thates	LIF	00.			
80.	When tu	urgidity increas	es within	the two guard c	ells flanl	king eac	h stomat	al apertu	ure or pore, the thin outer
	walls	and force	the inner	walls into a	S	hape.		•	•
	(A)	Bulge in, ov	al	(B)	Bulge	out, spi	indle		
	(C)	Bulge in, cr	escent	(D)	Bulge	out, cre	scent		
81.	Select in	ncorrect statem	ent regard	ing active uptak	e of ions				
	(A)	Active uptak	e of ions	is partly respons	sible for t	he wate	r potenti	al gradio	ent in roots, and therefore
		for the uptak	e of water	by osmosis.					
	(B)	Specific pro cytoplasm's			f root ha	ir cells	actively	pump ic	ons from the soil into the
	(C)	Ions are abs	orbed from	n the soil by onl	y active	transpor	t		
	(D)	Ions are abso	orbed fron	n the soil by both	h passive	and act	ive trans	port	
82.	Which o	of the following	g mineral :	requires chelatio	on in alka	line soil	to incre	ase its so	olubility?
	(A)	Iron (B)	Mang	anese (C)	Magne	esium	(D)	Phosp	horus
83.	Boron is	s not required f	or:						
	(A)	Pollen germi	nation	(B)	Photo	ysis of v	water		
	(C)	Sugar translo	ocation	(D)	Uptak	e and ut	ilisation	of Ca ⁺⁺	ions
		Vidyama	ndir Cla	sses Gurukul	for IITJE	E & Me	edical P	reparat	ion

84.	During/in	During/in active absorption of ions:									
	(A)	Carrier	rs are in	volved fo	r both influx a	nd efflux	of ions				
	(B)	Immob	oile carr	iers with j	pores pump ion	ıs					
	(C)	Ions m	ove in o	outer spac	e against electr	rochemic	al gradien	its			
	(D)	Downł	nill tran	sport of ic	ons occurs						
85.	Chloroph	nyll-b ha	ıs-CHO	group at	of h	ead porpl	hyrin.				
	(A)	C-3	(B)	C-7	(C)	C-5		(D)	C8		
86.	Select an	incorre	ct statei	nent w.r.t	. non-cyclic ph	otophosp	phorylatio	n.			
	(A)				ntre chl-a abson			•	•		
	(B)	Electro 700 nn		he reactio	n centre of PS	S-I are ex	xcited whe	en they	v receive red light of wavelength		
	(C)	NADP	+ is rec	luced to N	$ADPH + H^+$						
	(D)	The ex the ET		ectron do	es not pass on	to NADI	P ⁺ but is c	cycled	back to the PS-I complex through		
87.	The first	acceptor of CO ₂ in rice plant during carbon fixation cycle is:									
07.	(A)	PEP	(B)	Malic a		RUBP		15. (D)	PGA		
88.	Respirati					0.7	ce5	SIIN			
	(A)			exergonic		(B)5			exergonic process		
	(C)	Anabo.	lic and	excergoni	c process	(D)	Cataboli	ic and	endergonic process		
89.					ion reaction of		lycolysis				
	(A)	4	(B)	2	MEC(C)	8		(D)	6		
90.	In mitoc	hondria,	during	ETS prote	MED(C)	e in the:					
	(A)		membra		(B)		membrane	e			
	(C)	Interm	embran	e space	(D)	Matrix	X				
91.	Which of	f the foll	lowing	characteri	stic/s is/are see	n in only	y male Asc	caris:			
	(i)	Males	remove	body was	stes through the	e excreto	ry pore.				
	(ii)	Males	are trip	loblastic,	coelomate anir	nals.					
	(iii)	Males	are sho	rter than f							
	(A)	Both i	& ii	(B)	Both i & iii	(C)	iii only	(D)	i only		
92.	Which g	roup of a	animals	belongs t	o phylum Ascl	nelminthe	es?				
	(A)	Ascari	is, Ancy	elostoma, I	Pheretima	(B)	Ascaris	s, Wuch	nereria, Ancylostoma		
(C) Ascaris, Aurelia, Wuchereria						(D)	Aurelia	ı, Fasci	iola, Ascaris		

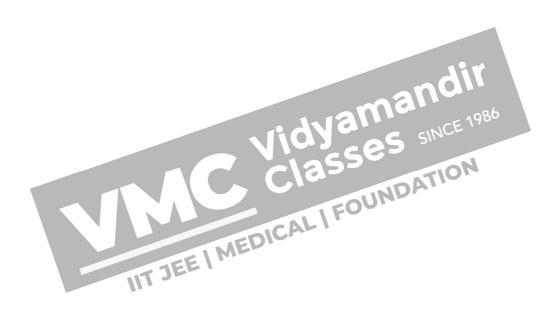

Earthworm

93.

coelom:

(A) **(B)** Filarial worm **(C)** Pin worm **(D)** 94. Which of the following statements is true for epithelial tissue? It arises only from the ectoderm. **(A)** Its free surface either faces a body fluid or the outside environment. **(B) (C)** It has large amount of intercellular matrix. **(D)** It is incapable of performing absorptive functions. 95. The tissue depicted in the following diagram is: Cartilage present at the ends of long bones (A) **(B)** Dense regular connective present in the tendons **(C)** Dense irregular connective tissue present in the skin **(D)** Loose connective tissue found in the capsule of abdominal organs 96. The first pair of wings in cockroach arises from and the second pair from . mesothorax, metathorax = 1980 (A) prothorax, mesothorax **(B)** mesothorax, prothorax **(C)** metathorax, mesothorax **(D)** NDATION 97. Read the following statements and identify the correct option: (I) In prokaryotic cells, the nuclear membranes, chloroplasts, mitochondria, microtubules and different kinds of pili are absent. In eukaryotic cell, the nuclear membranes, chloroplasts, mitochondria and pili are present. (II) (III) In prokaryotic cell, the ribosome is of 70 S type, same as in mitochondria of eukaryotic animal cell. (A) I and II are wrong III is correct **(B)** I is correct, II and III are wrong **(C)** I and II are correct, III is wrong (D) I and III are correct and II is wrong **98.** The main organelle involved in modification and routing of newly synthesized proteins to their destination is: Plastid **(B)** Golgi body Ribosomes (A) **(C)** Lysosome **(D)** 99. Kinetochore is: A type of chromophore **(B)** Disc present at centromere (A) **(C)** Portion between centromere and telomere **(D)** Constituent of chromomere **100.** Who was the first to explain that the cells divide and new cells are formed from the pre-existing cells? Anton Von Leeuwenhoek Rudolf Virchow (A) **(B) (C)** Robert Brown **(D)** Purkinje

Liver fluke


101.	During c	ell cycle the sequ	uences is	:							
	(A)	$G_1 \rightarrow S \rightarrow G_2$	\rightarrow M	(B)	$G_1 \rightarrow C$	$G_2 \to S \to M$					
	(C)	$G_1 \rightarrow G_2 \rightarrow S$	$\rightarrow M$	(D)	$G_1 \rightarrow C$	$G_2 \to M \to S$					
102.	On treati	ng a starch mole	cule with	iodine, starcl	n turns blu	e. What is the re	ason for	this?			
	(A)	Starch reduces	iodine ii	nto iodides.							
	(B)	The helical arr	angemen	t of starch mo	lecule trap	os the iodine.					
	(C)	Iodine reacts c	hemicall	y with starch.							
	(D)	The pH of star	ch contai	ning food is a	ltered with	n iodine which c	hanges it	ts color.			
103.	In a holo	enzyme, the pro-	sthetic gr	oup:							
	(A)	is a firmly bou	•	•	organic pa	rt.					
	(B)	is a loosely bo	und inorg	ganic part.							
	(C)	is a loosely bo	und non j	proteinaceous	organic pa	art.					
	(D)	is a tightly bou	and inorg	anic part .							
104.	The num	ber of teeth that	grow twi								
	(A)	4 (B) 12 (C) 20 (D) 28									
105.	Mark the	4 (B) 12 (C) 20 (D) 28 the wrong match? Structure Function 986 Caecum -Small blind sac which hosts some symbiotic micro-organisms. Vermiform appendix -A narrow finger like tubular projection, which is a vestigial organ.									
		Structure		Func	ction		CE ¹⁹⁸⁰	6			
	(A)	Caecum	1.	–Small bli	nd sac whi	ch hosts some s	ymbiotic	micro-o	-		
	(B) (C)	Vermiform app									
	(C) (D)	Descending part of colon-Opens into the rectum which opens out through the anus.Stomach-Located in the lower right portion of the abdominal cavity.									
106.	· í			Located		r right portion o	r the doc		uvity.		
	(A)	Intrinsic factor	secreted	by parietal ce	$lls \rightarrow Esse$	ential for absorpt	tion of vi	tamins E	B ₁₂ .		
	(B)	Bile \rightarrow activate		N. C.		-					
	(C)	Succus entericu	$us \rightarrow digonal$	estion of nucle	eic acid int	o nucleotides.					
	(D)	Enterokinase –	→ secrete	d by intestinal	mucosa a	ctivates trypsino	gen into	trypsin.			
107.		•••			•		•		l of O ₂ /100mlof		
		his arteries, wha									
	(A)	14 ml	(B)	19 ml	(C)	10 ml	(D)	9 ml			
108.		l chamber opens									
100	(A)	Oropharynx	(B)	Nasopharyn		Laryngophary	nx	(D)	Larynx		
109.	-	en present in the Excretion	-	-		Pland alotting	(D)	All of t	hasa		
110.	(A) Serum is		(B)	Respiration	(C)	Blood clotting	(D)	All of t	nese		
110.	(A)	Fluid in blood fi	om which	n all blood corr	ouscles are	removed.					
	(B)	Fluid in blood f		-							
	(C)	Fluid in blood from which blood cells and fibrinogen are removed.									
	(D)	Same as plasma	a.								

(A)

111. The first heart sound is produced due to:

Simultaneous opening of both the atrioventricular valves

(B) Simultaneous closure of both the atrioventricular valves **(C)** Simultaneous opening of both the semilunar valves **(D)** Simultaneous closure of both the semilunar valves **112.** Identify correctly the labeled parts in the following diagram: A = Adrenal gland, B = Pelvis, C = Medulla, D = Cortex**(A)** A = Adrenal gland, B = Pelvis, C = Cortex, D = Medulla**(B)** A = Adrenal gland, B = Cortex, C = Pelvis, D = Medulla **(C) (D)** A = Renal capsule, B = Pelvis, C = Medulla, D = Cortex **113.** Which of the following statement is incorrect? (A) Ureter, blood vessels and nerves enter kidney through Hilum. **(B)** Kidney is situated between the levels of last thoracic and fourth lumbar vertebra close to the dorsal inner wall of the abdominal cavity. **(C)** Human kidney measures 10-12 cm in length, 5-7 cm in width, 2-3 cm in thickness. Average weight of each kidney is 120-170 gms. **(D) 114.** Floating ribs of thoracic cage are: 8th to 10th Pair(D) 1st to 7th Pair (B) 8th to 9th pair 11th to 12 Pair **(A)** (C) 115. Acetabulum occur in: (A) cranium **(B)** vertebrae (\mathbf{C}) pelvic girdle **(D)** pectoral girdle **116.** Hypothalamic hormones directly regulate the synthesis and secretion of: (B) Pituitary hormones **(A)** Thyroid hormones 117. ACTH controls the secretion of: (A) Insult Parathormone Norepinephrine (C) Epinephrine **(D)** Glucocorticoids 118. The membranous labyrinth is surrounded by a fluid called: Perilymph (A) **(B)** Endolymph **(C) (D)** Vitreous humor Cerebrospinal fluid **119.** The lower membrane of the scala vestibuli is the: Tympanic membrane **(B) Reissner's membrane (A)** Basilar's membrane **(D)** Tectorial membrane **(C) 120.** How many bones in the cranium of human beings are paired? Four **(A) (B)** Two **(C)** One **(D)** Eight

୬୦ ୬୦ End of Sample Paper | 1 Year Medical | Paper II ୧୯ ୧୯ ୧୯

Answers to Sample Paper | 1 Year Medical

рну	SICS	CHFM	ISTRY		RIOI	JOGY	
1.	(B)	31.	(C)	61.	(C)	91.	(C)
2.	(D)	32.	(D)	62.	(C)	92.	(B)
3.	(D)	33.	(\mathbf{A})	63.	(B)	93.	(A)
4.	(B)	34.	(D)	64.	(C)	94.	(B)
5.	(A)	35.	(B)	65.	(B)	95.	(C)
6.	(B)	36.	(A)	66.	(C)	96.	(B)
7.	(D)	37.	(A)	67.	(B)	97.	(A)
8.	(A)	38.	(B)	68.	(B)	98.	(B)
9.	(C)	39.	(B)	69.	(D)	99.	(B)
10.	(D)	40.	(A)	70.	(D)	100.	(B)
11.	(C)	41.	(D)	71.	(A)	101.	(A)
12.	(D)	42.	(D)	72.	(D)	102.	(B)
13.	(B)	43.	(C)	73.0	(D)	LCE 1103.	(A)
14.	(D)	44.	(B)	74.	(B)5 51	104.	(C)
15.	(C)	45.	(B)	75.	(B) (B)	105.	(D)
16.	(A)	46.	(B)	76.	(\mathbf{C})	106.	(C)
17.	(C)	47.	(A)	77.	(C) (B) DA	107.	(A)
18.	(B)	48.	(A)	78.	(B)	108.	(B)
19.	(A)	49.	(B)	79.	(D)	109.	(C)
20.	(D)	50.	(B)	80.	(D)	110.	(C)
21.	(C)	51.	(A)	81.	(C)	111.	(B)
22.	(D)	52.	(A)	82.	(A)	112.	(A)
23.	(B)	53.	(A)	83.	(B)	113.	(B)
24.	(B)	54.	(B)	84.	(A)	114.	(D)
25.	(A)	55.	(A)	85.	(Á)	115.	(C)
26.	(D)	56.	(D)	86.	(D)	116.	(B)
27.	(D)	57.	(D)	87.	(C)	117.	(D)
28.	(A)	58.	(C)	88.	(B)	118.	(A)
29.	(A)	59.	(C)	89.	(B)	119.	(B)
30.	(C)	60.	(C)	90.	(C)	120.	(B)

Sample Paper – II

Sample Paper - 1 Year Program

Admission & Scholarship Test | Medical

Duration : 3.0 Hrs

Maximum Marks: 480

PAPER SCHEME :

- The paper contains 120 Objective Type Questions divided into three sections: Section I (Physics), Section II (Chemistry) and Section III (Biology).
- Section I and II contain 30 Multiple Choice Questions each and Section III contains 60 questions. Each question has 4 choices (A), (B), (C) and (D), out of which **ONLY ONE CHOICE is correct**.

MARKING SCHEME :

• For each question in Section-I, II and III, **4 marks** will be awarded for correct answer and **-1 negative marking** for incorrect answer.

GENERAL INSTRUCTIONS :

- For answering a question, an **ANSWER SHEET (OMR SHEET)** is provided separately. Please fill your **Name**, **Roll Number, Seat ID, Date of Birth** and the **PAPER CODE** properly in the space provided in the **ANSWER SHEET.** IT IS YOUR OWN RESPONSIBILITY TO FILL THE OMR SHEET CORRECTLY.
- A blank space has been provided on each page for rough work. You will not be provided with any supplement or rough sheet.
- The use of log tables, calculator and any other electronic device is strictly prohibited.
- Violating the examination room discipline will immediately lead to the cancellation of your paper and no excuses will be entertained.
- No one will be permitted to leave the examination hall before the end of the test.
- Please submit both the question paper and the answer sheet to the invigilator before leaving the examination hall.

PART - I (PHYSICS)

- 1. From the top of a building, 16 m high, water drops are falling at equal intervals of time such that when the first drop reaches the ground, the fifth drop just starts. The distances between the successive drops, in metres, at that instant is
 - **(A)** 8, 4, 2, 1 **(B)** 7, 5, 3, 1 **(C)** .5, 5, 2.5, 1 **(D)** None of the above
- 2. A train accelerates from rest for time t_1 at a constant rate α and then it retards at the constant rate β for time t_2 and come to rest. The ratio of t_1/t_2 is equal to
 - **(C)** α^2 / β^2 **(D)** β^2 / α^2 **(A)** α/β **(B)** β / α
- 3. The percentage errors in the measurement of mass and speed are 2% and 3% respectively. How much will be the maximum error in the estimate of the kinetic energy obtained by measuring mass and speed?

- If $\vec{A} = 4\hat{i} + 3\hat{j} 2\hat{k}$ and $\vec{B} = 8\hat{i} + 6\hat{j} 4\hat{k}$, the angle between \vec{A} and \vec{B} is 4. (A) 45° **(B)** 60° **(C)** 0° **(D)**
- A weight of 290 N and another of 200 N are suspended by a rope on either side of a frictionless pulley. The 5. acceleration of each weight (in m/s^2) is (C) **(D)**
 - 2.2 1.5 **(B)** 1.8 2.5 (A)
- A body kept on a smooth inclined plane having inclination 1 in x will remain stationary relative to the 6. inclined plane if the plane is given a horizontal acceleration equal to TION

(A)
$$\frac{g}{\sqrt{x^2-1}}$$
 (B) $\frac{gx}{\sqrt{x^2-1}}$ (C) $\frac{\sqrt{x^2-1}}{\sqrt{g}}$ (D) $g\sqrt{x^2-1}$

7. Uniform chain of length L and mass M is lying on a smooth table and one-third of its length is hanging vertically down over the edge of the table. The work required to pull the hanging part on the table is **(B)** (A) MgL MgL/3**(C)** MgL/9 **(D)** MgL/18

- A 4 kg stone tied at the end of a string 1 m long is whirled in a vertical circle. At the instant when the string 8. makes an angle θ with the vertical, the linear speed of the stone is 4 m/s and the tension in the string is 103.2 N. Then the value of θ is
 - (A) 0° 30° **(C)** 60° **(D)** 90° **(B)**
- 9. A particle performs uniform circular motion with angular momentum l. If the frequency of the motion of the particle is doubled and its kinetic energy halved, the angular momentum becomes
 - l/2**(A)** 2l**(B)** *41* **(C) (D)** l/4
- 10. A constant torque acting on a uniform circular wheel changes its angular momentum from A_0 to $4A_0$ in 4 seconds. The magnitude of this torque is
 - (A) $3A_0/4$ **(B) (C)** $4A_0$ **(D)** $12 A_0$ A_0
- The escape velocity from the earth is 11 km/s. The escape velocity (in km/s) from a planet having twice the 11. radius and the same mean density as those of the earth is
 - (A) 5.5 11 22 **(D)** None of these **(B) (C)**

90°

12.								
				g around the ea				If the mass of the earth is
	(A)	GMm/r	(B)	GMm/2r	(C)	GMm/3r	(D)	GMm/6r
13.				re by the applie f the radius, by			nm. The e	extension in a wire of the
	(A)	0.75 mm	(B)	1.5 mm	(C)	6.0mm	(D)	12.0 mm.
14.	•	•					•	th to which the vessel car any water entering inside
	(A)	T/rdg	(B)	2T/rdg	(C)	3T/rdg	(D)	4T/rdg
15.	respecti	-	and B are	mixed, the ten		-		e 12°C, 19°C and 28°C d C are mixed, it is 23°C
	(A)	10.1°C	(B)	20.2°C	(C)	30.3°C	(D)	40.4°C
16.	relative molecu	molecular mas les of the mono	ss eight ti atomic ga		which is nolecules	monoatomic.	The ratio	s, which is diatomic, has of the r.m.s speed of the
	(A)	8	(B)	4	(C)	212	51N (D) 1°	2
7.		mount of heat g			and the a	amount of wor	k done by	the system be $-15J$, then
	(A)	-50J	(B)	20J	(C)	F30UNDA	(D)	50 J
8.		e of wood of re bove the surface						The fraction of volume of
	(A)	0.3	(B)	0.4	(C)	0.6	(D)	0.8
19.		•		nn AB of water density of para		ed by a colum	n CD of p	paraffin, as $\int_{h_1} c$
	(A)	h_2/h_1	(B)	h_1/h_2				
	(C)	$(h_1-h_2)/h_1$	(D)	$h_2/(h_1+h_2)$				
20.				of period T is g / time period wi		gative charge.	If it is all	owed to oscillate above a
	(A)	equal to T	(B)	more than T	(C)	less than T	(D)	infinite.
	A partic	cle of mass 0.5	kg execut	es S.H.M. Its er	nergy is 0	0.04 J. If its tim	e period i	s π seconds, its amplitude
21.	is							
21.	-	10 cm	(B)	15 cm	(C)	20 cm	(D)	40 cm
21.	is (A) A string		weight o	f 4 kg is vibrati				40 cm additional weight required

- A car, sounding a horn of frequency 1000 Hz, is moving directly towards a huge wall at a speed of 15 m/s. 23. If speed of sound is 340 m/s, then the frequency of the echo heard by the driver is (A) 1046 Hz **(B)** 954 Hz **(C)** 1092 Hz **(D)** 908 Hz 24. From the top of a building 20 m high, a ball is projected horizontally. If the line joining the point of projection to the point where it hits the ground makes an angle of 45° with the horizontal, then the initial velocity of the stone is $(g = 10 \text{ m/s}^2)$ 5 m/s20 m/s**(A) (B)** 10 m/s **(C)** 15 m/s**(D)** The equation of motion of a projectile are given by x = 36 t metre and $2y = 96 t - 9.8 t^2$ metre. The angle 25. of projection is $\sin^{-1}\left(\frac{4}{5}\right)$ (B) $\sin^{-1}\left(\frac{3}{5}\right)$ (C) $\sin^{-1}\left(\frac{4}{3}\right)$ (D) $\sin^{-1}\left(\frac{3}{4}\right)$ (A) Two rods of the same length and diameter, having thermal conductivities K1 and K2, are joined in parallel. 26. The equivalent thermal conductivity of the combination is $(K1 + K_2)/2$ (D) $(K_1K_2)^{1/2}$ **(A)** K_1K_2/K_1+K_2 **(B)** $K_1 + K_2$ **(C)** A body, having a surface area of 5.0 cm², radiates 300 J of energy per minute at a temperature of 727°C. 27. The emissivity of the body is (Stefan's constant = $5.67 \times 10^{-8} \text{ W/m}^2/\text{K}^4$) (C) 0.36 **(D)**\980.54 **(B)** 0.18 0.09 (A) A boat which has a speed of 5km/h in still water crosses a river of width 1 km along the shortest possible 28. (C) 4 UNDATION (D) path in 15 minutes. The velocity of the river water in km/h is 3 5 **(A)** 1 **(B)** In a rocket of mass 1000 kg fuel is consumed at the rate of 40 kg/s. The velocity of the gases ejected from 29. the rocket is 5×10^4 m/s. The thrust on the rocket is **(B)** $= 5 \times 10^4 \,\mathrm{N}$ (C) $2 \times 10^6 \text{ N}$ (D) $2 \times 10^9 \text{ N}$ 2×10^3 N (A) 30. A solid sphere of mass 1kg and radius 3 cm is rotating about an axis passing through its centre with an angular velocity of 50 rad/s. The kinetic energy of rotation is (A) 9/20 J **(B)** 90 J 910 J **(D)** 4500 J **(C)** PART - II (CHEMISTRY) If K₁ and K₂ are the respective equilibrium constants for the two reactions, 31. $XeF_6(g) + H_2O(g) \Longrightarrow XeOF_4(g) + 2HF(g)$ $XeO_3(g) + XeF_6(g) \Longrightarrow XeOF_4(g) + XeO_2F_2(g)$ the equilibrium constant of the reaction, $XeO_3(g) + 2HF(g) \Longrightarrow XeO_2F_2(g) + H_2O(g)$ will be $\frac{K_1}{(K_2)^2}$ (B) $K_1 \cdot K_2$ (C) $\frac{K_1}{K_2}$ (**D**) $\frac{K_2}{K_1}$ (A) 32. In the reaction, $4NH_3(g) + 5O_2(g) \longrightarrow 4NO(g) + 6H_2O(l)$ when 1 mole of ammonia and 1 mole of O_2 are made to react to completion what will happen?
 - (A) $1.0 \text{ mole of } H_2O \text{ will be produced}$
 - **(B)** 1.0 mole of NO will be produced
 - (C) all the oxygen will be consumed (D) all the ammonia will be consumed

42. In Kjeldahl method, V ml of H_2SO_4 of molarity M are taken for absorbing NH_3 and V_1 ml is vol of NaOH of molarity M for titration of excess H_2SO_4 , then % of nitrogen is given by (m gm is mass of organic compound)

(A)
$$\frac{1.4 \times M\left(V - \frac{V_1}{2}\right)}{m}$$
 (B) $\frac{1.4 \times M \times 2\left(V - \frac{V_1}{2}\right)}{m}$
(C) $\frac{1.4 \times M\left(V - \frac{V_1}{2}\right)}{2m}$ (D) $\frac{1.4 \times M \times 2\left(V - \frac{V_1}{2}\right)}{500 m}$

43.	Benzene reacts with acetyl chloride in the presence of $AlCl_3$ to give										
	(A)	Chlorobenzene	e (B)	Toluene	(C)	Acetophenone	(D)	None of these			
44.	HC ≡ CI	$H \xrightarrow{HCN} A \xrightarrow{HCN} A$	Polymerise	\rightarrow B. B is used to	o prepar	e					
	(A)	Pipes	(B)	Foils	(C)	Fibre	(D)	Transparent domes			
45.	A soluti	on of NH ₄ HSO	4 is elect	rolysed. Substar	nce obtai	ined is					
	(A)	H_2SO_4	(B)	H_2O_2	(C)	NH ₄ OH	(D)	$(\mathrm{NH}_4)_2\mathrm{O}_2$			
46.	Relative	hydrated ionic r	adii is in	the order as							
	(A)	$Li^+ > Na^+ > k$	$K^+ > Rb^+$	$\sim Cs^+$	(B)	$Na^+ > Li^+ > K$	$a^+ > Rb^+$	\sim $>$ Cs ⁺			
	(C)	$Cs^+ > Rb^+ > I$	$X^+ > Na^+$	+ > Li ⁺	(D)	D) $Li^+ > Cs^+ > Na^+ > K^+ > Rb^+$					
47.	Mircro c	cosmic salt is									
	(A)	Na(NH ₄)HPO	\mathcal{D}_4		(B)	NaHKPO ₄					
	(C)	(NH ₄)NaPO ₄			(D)	Na ₂ (NH ₄)PO	4				
48.	Which o	one is not correct	for boro	n and silicon?		- 20	dI				
	(A)										
	(B)	Mg combines	with B a	nd Si both	OY						
	(C)	Both of them e			125	500	ION				
	(D)			hard where SiC							
49.	Two eler of comp	ments A (At. Wround is	t. 75) and	d B (At. Wt. 16) combin	ne to give a comp	pound w	rith 75.8% of A. Formula			
	(A)	AB	(B)	A ₂ BEDIC	(C)	AB ₂	(D)	A_2B_3			
50.	H_2S cos	ntains 5.88%, h	ydrogen	H_2O contains	11.11%	of hydrogen, wh	nile SO	2 contains 50% S. These			
	figures i			2			2	-			
	(A)	law of conserv	ation of	mass	(B)	law of constant	t proport	tion			
	(C)	law of multiple	e proport	tion	(D)	law of reciproc	al propo	ortion			
51.	Molarity	y of $\frac{N}{100}$ KMnO ₂	in dilut	e alkaline mediu	ım is equ	ıal					
	(A)	M 300	(B)	<u>M</u> 200	(C)	$\frac{M}{100}$	(D)	$\frac{M}{50}$			
52.	Density	of Neon will be	highest a	ıt							
	(A)	STP	(B)	0°C, 2 atm	(C)	273°C, 1 atm	(D)	273°C, 2 atm			
53.	Increasir	ng the temperatu	re of an a	aqueous solutior	ns will ca	ause					
	(A)	decrease in mo	olarity		(B)	decrease in % by volume					
	(C)	decrease in mo	ole fraction	on	(D)	decrease in % b	oy mass				

54.	$A_2B_3 -$	$\Rightarrow 2A^{+3} + 3B^{-2},$	K _{sp} is g	iven by v	where x	mol L ⁻¹	is solubility		
	(A)	$K_{sp} = (2x)(3x)$	x)		(B)	K _{sp} =	$(2x)^2(3x)$		
	(C)	$K_{sp} = (2x)^2 (3x)^2$	$(x)^3$		(D)	K _{sp} =	$2x(3x)^3$		
55.	Out of fo	ollowing which	is correc	t?					
	(A)	$\Delta \mathbf{H} = \Delta \mathbf{E} - \mathbf{n}_{\mathrm{g}} \mathbf{R}$	RТ		(B)	$\Delta G =$	$\Delta H - \Delta S$		
	(C)	$\Delta G^{\circ} = -2.3031$	RT log K		(D)	$\Delta H =$	$\frac{\Delta E}{2.303 R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$	$\left(\frac{1}{\Gamma_2}\right)$	
56.	Which o	of the following	is not an	electropl	hile?				
	(A)	SO ₃	(B)	$\overline{C}Cl_2$		(C)	⁺ NO ₂	(D)	NH_2^-
57.	The hyb	rid orbitals used	l by bror	nine aton	n in BrF	F_3 are			
	(A)	sp ²	(B)	sp ³		(C)	sp ³ d	(D)	sp ³ d ²
58.	The firs	t ionization pote	ential of]	Mg, Al, P	o and S t	follows	the order		*
	(A)	Mg < Al < P <	< S	-		(B)	Al < Mg < P	<sC</s	
	(C)	Al < Mg < S <	C P			(D)	Mg < Al < S	<p SINCE 19</p 	986
59.	As per t	he uncertainty p	rinciple,	$\Delta x.\Delta p \geq$	N	0.7	.ces	SINCE	
	_		-			(C)	x	(D)	Zero
60.	The onth	h nalpy change in	on isothe	rmal ray	arcible	vnoncio	n of an ideal of		
00.	(A)	Positive	(B)	Negati	ve	(C)	Zero	(D)	Infinitely large
				IM					, ,
						I (BIOLO	-		
61.		cation of organis		sed on ev	olution	•	e	elationshi	p is called
	(A) (C)	Biosystematic Numerical tax				(B) (D)	Phenetics Cladistics		
			•			(D)	Clauistics		
62.		of binomial nor			1		Demain		Tamanala
	(A)	Linnaeus	(B)	Mende		(C)	Darwin	(D)	Lamarck
63.		ile bacteria are a		•			E1 11		C'II'
	(A)	Pili	(B)	Fimbri	ae	(C)	Flagella	(D)	Cilia
64.		cleus is absent in							
	(A)	Vaucheria	(B)	Volvox	•	(C)	Anabaena	(D)	Mucor
65.	Which is	s not correct for	fungi be	elonging t	to the cl	ass Deut	teromycetes?		
	(A)	Commonly ca	•		ngi	(B)	Reproduce o		-
	(C)	Includes only	parasitic	e fungi		(D)	Mycelium is	septate a	nd branched

1 Year	Sample Paper	Paper III
--------	--------------	-----------

66.	Archego	niophore is pres	ent in									
	(A)	Adiantum	(B)	Funaria	(C)	Marchantia	(D)	Chara				
67.	<i>Selagine</i> because	ella and Salvinic	are con	nsidered to rep	present a	significant step	towards	evolution of seed habit				
	(A)	Female gamet	tophyte i	s free and gets	dispersed	like seeds						
	(B)	Female gametophytes lack archegonia										
	(C)	Megaspores possess endosperm and embryo surrounded by seed coat										
	(D)	Embryo develops in female gametophyte which is retained on parent sporophyte.										
68.	Select ar	n incorrect statement.										
	(A)	The root is covered at the apex by a thimble-like structure called the root cap										
	(B)	Roots in some	plants c	hange their sha	ape and str	ructure and beco	ome modi	fied.				
	(C)	Pneumatophor	res, help	to get CO ₂ for	photosynt	thesis.						
	(D)	Tap roots of ca	arrot, tur	nips and adven	ntitious roo	ots of sweet pota	ato, get sv	wollen and store food.				
69.	Type of	modified stem n	neant for	vegetative rep	oroduction	in pineapple is	also pres	ent in				
	(A)	Strawberry	(B)	Jasmine(C)	Chrys	anthemum	(D)	Grass				
70.	The rach	is in palmately o	compour	d leaves		aľ	1011					
	(A)	Is absent		(B)	Repre	sents petiole	INCE 19	86				
	(C)	Represents mi	drib of le		Branc	hed os s	INCE .					
71.	Select an	n incorrect stater	nent w.r.	t. racemose ty	pe of inflo	prescences.	ION					
	(A)	The main axis	continue	es to grow.		INDA	110					
	(B)	The flowers ar	e borne i	laterally.		FOUL						
	(C)	Flowers are bo	orne in ai	n acropetal suc	cession.							
	(D)	All statements	are corr	ect.								
72.	Promeria	stem gives rise to										
	(A)	Lateral Meriste	em		(B)	Cork Cambiu	m					
	(C)	Apical Meriste	em		(D)	Secondary Me	eristem					
73.	Collence	nyma differs fror	n sclerer	nchyma in								
	(A)	Retaining prot	oplasm a	t maturity	(B)	Having thick	walls					
	(C)	Having wide l	umen		(D)	Being meriste	matic					
74.	The laye	r of cells outside	e the phl	oem meant for	giving ris	e to the root bra	nches is	called				
	(A)	Cambium	(B)	Corpus	(C)	Endodermis	(D)	Pericycle				
75.	Other na	mes of secondar	v cortex	. cork cambiur	n and corl	x are						
	(A)	Phellem, phell	•		(B)	Phellogen, ph	ellem and	l phelloderm				
	(C)	Phelloderm, pl			(D)	Phellogen, ph		<u>^</u>				
76		-	-	-				•				
76.	(A)	parian strip is con Suberin	mposed ((B)	Cutin	(C)	Lignin	(D)	Anthocyanin				
	(41)	Suberni	(U)	Cuilli		Ligilli	(1)	¹ minocyanni				

77.	Imbibiti	•		-							
	(A)	Osmos	515	(B)	Active	transpo	rt(C)	Bulk flov	V	(D)	Diffusion
78.		C					U	through:			
	(A)	Diffusi	ion	(B)	Active	uptake	(C)	Both (A)	and (B) (D)	Mass flow
79.	•	ells. Cel									s in the cell walls of the making it easier for the
	(A)	Longi	tudinall	y, radiall	y		(B)	Radially,	longi	tudinall	У
	(C)	Rando	mly, rad	ially			(D)	Randoml	y, lon	gitudina	ılly
80.	In Hydro	oponics:									
	(A)	-		ed at 8-9			(B)				nerals is possible
	(C)	Chemi	cally ac	tive med	ium is u	sed	(D)	Yield is r	not un	iform	
81.	Classific				nts is:						
	(A)	-	ntitative				(B)	Based on			
	(C)	A qual	itative f	eature			(D)	Based on	the s	ize of th	e plant
82.	Plants al							ami	5.	NCE 19	86
	(A) (D)				absorbt			and the second se	and the second s		
	(B) (C)			l solutio	ent of wa n is hype	ater absc	orduon	550		ION	
	(C) (D)			l solutio	n is hype	otonic to	cell sap		AC		
83.		plants ha						FOO			
05.	(A)	More I		(B)	Large	orana	(C)	Less PSI		(D)	All of these
84.		of electr			hasis on	ours from	(C) m?	Less PSI		(2)	
04.	(A)		on centr	e		(B)	Quanta	asome			
	(C)		na moleo			(D)	-	A) & (B)			
85.	In Calvi	n (Ca cy	ala)								
03.	(A)	5		sed for u	nlifting	12 NAD	PH ₂ to	act as hydr	ogen	donor	
	(B)				net outp		-	-	ogen	donor	
	(D) (C)	-	-		lrate syn						
	(C) (D)			are corr		ulesiseu					
86.	RQ depe										
00.	(A)	-		sence of	oxygen	(B)	$O_2 col$	ntent of sub	ostrate		
	(C)		of subs		5, 8011	(D) (D)	All of				
87.		•			horylatic	-		FCA cycle	D)	4	
	(A)	1	(B)	2		(C)	3	(D)	4	

(A)

(B)

(C)

(D)

(1) Prophase I

(1) Metaphase I

(1) Metaphase

(1) Anaphase

8.	(A)	0 ₂	(B)	ectron transport cyt a	(C)	H ₂ O	(D)	cyt a ₃				
		-	. ,	-				5				
9.	Increas			rgement and n	ew cell v	vall deposition	are the c	haracteristics of	cells in			
	(1)	phase of growth		F1 (*								
	(A)	Meristematic	(B)	Elongation	(C)	Maturation	(D)	Differentiation				
).	Which	of the following	physiolo	gical effects is	caused in	n plants by gibb	perellic ac	id?				
	(A)	Shortening of	genetica	lly tall plants	(B)	Elongation of	of genetica	ally dwarf plants				
	(C)	Rooting in ste	m cuttin	gs	(D)	Yellowing o	of young le	eaves				
۱.	Which	ch of the following statement regarding cilia is not correct?										
	(A)	Cilia contains	nine do	ublet microtubu	les surro	unded by two s	ingle mic	rotubules.				
	(B)	The organized	l beating	of cilia is cont	rolled by	fluxes of Ca^{+2}	across the	e membrane.				
	(C)	Cilia are hair like cellular appendages.										
	(D)	Microtubules of cilia are composed of tubulin proteins.										
2.	Choose	e the correct state	ment:									
	(A)	Lizards show		V		and mains		r i				
	(B)	Most lizards a		-			nor					
	(C)			s are modified p	parotid gl	and	INCE 1	986				
	(D)	All of these			10.3	.ces	SING					
		C.1. C.11 .			-12	55	TION					
3.		of the following										
	(A)	Chromatid	(B)	DNA (C)	Centr	omere (D)	Telon	nere				
4.	Red co	lour of tomato is	due to:	st MEDI (B) plast (D)	CHE							
	(A)	Lycopene in c	hloropla	st (B)	Anthe	ocyanin in leuc	oplast					
	(C)	Xanthophyll i	n chloro	plast (D)	Lycoj	pene in chromo	plast					
5.	The giv	ven diagram (A) a	and (B) r	represents whic	h stage o	f meiosis?						
		(1)		(2	2)							
			-	(I)	10							

(2) Metaphase I

(2) Anaphase I

(2) Anaphase

(2) Telophase

- 96. Which of the following is not related with synthesis phase of cell cycle?
 - Duplication of centriole occurs. (A)
 - **(B)** 2C amount of DNA is doubled into 4C.
 - **(C)** Tubulin and histone protein are synthesized.
 - **(D)** Synthesis of histone protein occurs.

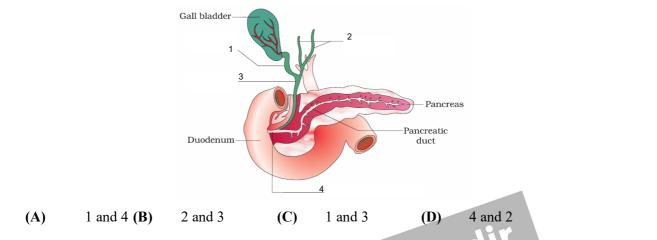
97. The statement which is not correct amongst the following is:

- Starch is a homopolymer of glucose containing amylose and amylopectin. (A)
- Maltose is a disaccharide formed from two glucose units. **(B)**
- **(C)** Cellulose is a polysaccharide formed from multiple units of glucose.
- **(D)** Inulin is a polymer of NAG.
- 98. Identify the group that includes nucleotides:
 - Adenosine, guanosine, Cytidine (A)
 - **(B)** Adenylic acid, adenosine, Uridine
 - **(C)** Adenylic acid, Uridylic acid, guanylic acid
 - **(D)** Adenosine, thymidine, Uridine

99. Holoenzyme is:

- Apoenzyme + cofactor + prosthetic group (A)
- Prosthetic group + cofactor **(B)**
- Apoenzyme + apoenzyme **(C)**
- 100. Which characteristic is not true for chordates?
 (A) Pharynx is perforated by gill slits
 (B) Presence of post and the second second

 - Heart is dorsal **(C)**
 - **(D)** Bilaterally symmetrical, triploblastic, coelomate


101. Given below are the characteristics of the following animal. Which of these are true?

- (i) Migrate to fresh water for spawning
- (ii) They have paired fins
- (iii) Circulation is of open type
- (iv) Vertebral column is cartilaginous
- ii & iii (A) **(B)** i & iii (C) i & iv **(D)** ii & iv
- **102.** The muscle tissue type that consists of single, very long, cylindrical, multinucleate cells with very obvious striations is:
 - skeletal muscle only (A)
- cardiac and smooth muscle **(B)**
- **(C)** cardiac and skeletal muscle **(D)** cardiac muscle only
 - Vidyamandir Classes | Gurukul for IITJEE & Medical Preparation

amandir ses since 1986

- 103. Which of the following statement is false?
 - (A) Cell body of neuron has nucleus (B) Nissl's granules are present in cyton
 - (C) Unmyelinated axons do not have Schwann cells
 - (D) A neuron can have one dendrite & one axon
- 104. In the given diagram cystic duct and common bile duct are:

105. After ingestion, the first type of macromolecule to be worked on by enzymes in the human digestive system is:

(A) protein (B) carbohydrate (C) cholesterol (D) glucose

- 106. The diffusion membrane, through which gaseous exchange occur in the lungs comprises of:
 - (A) Alveolar epithelium & capillary endothelium.
 - (B) Alveolar epithelium & capillary endothelium and the basement membrane between them.
 - (C) Only alveolar epithelium.
 - (D) Alveolar epithelium and basement membrane of alveoli.
- 107. Read the given statement and fill in the blanks:

"Blood is the medium for transport of gases. About ___(I)___% of CO_2 is transported in dissolved form through plasma while around _____% is transported through RBC."

	(I)	(II)
(A)	7%	70%
(B)	70%	20-25%
(C)	20-25%	7%
(D)	7%	20-25%

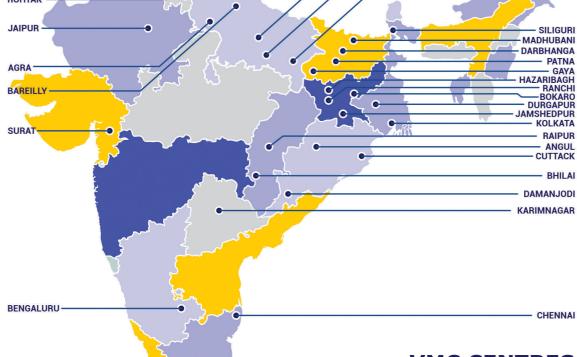
- 108. Mark the correct statement regarding the events of cardiac cycle:
 - (A) Atrial filling is always active and it is followed by first heart sound
 - (B) Second heart sound occurs after the completion of ventricular systole
 - (C) Closing of semilunar valve in heart depends upon increase in auricular pressure and decrease in ventricular pressure respectively
 - (D) Joint diastole begins after the completion of atrial systole

109.	In resting stage normal activity of heart is regulated by:										
	(i)	Nodal tissue of heart		(ii)	Medulla oblon	igata					
	(iii)	Purkinje fibres									
	(iv)	Branches of sympathet	tic and parasymp	athetic n	nervous system						
	(A)	i, ii, iii, iv (B)	i, ii only	(C)	i, iii only	(D)	ii, iv only				
110.	The strue	ctural and functional uni	ts of kidney:								
	(A)	Neuron		(B)	Nephridia						
	(C)	Uriniferous tubule		(D)	Renal tubule						
111.	Renal co	rpuscle consists of:									
	(A)	Glomerulus only		(B)	Afferent and e	fferent a	rterioles				
	(C)	Glomerulus and Bown	nan's capsule	(D)	Malphigian bo	dy and F	Renal tubule				
112.	Followin	g are the events which o	occur during mus	cle cont	raction. Arrange	them in	a proper sequence:				
	(i)					nds with	the specific sites present				
		on the troponin component of the thin filaments.									
	(ii)	A neurotransmitter is r				G					
	(iii)	The sarcolemma is dep				~	ah l				
(iv) Conformational change occurs in the troponin molecule and the ac molecules are exposed.							e sites present on F-actin				
	(v)	Myosin head, now binds with active site of actin.									
	(vi)	During relaxation, the Ca ⁺⁺ is pumped back into the sarcoplasmic reticulum. Troponin masks									
					-00.						
	(A)	c, b, d, a, e, f (B)	myosin. b, c, d, a, e, f	(C)	b, c, a, d, e, f	(D)	b, c, a, e, d, f				
113.	Which of	f the following is not con	rrect for red muse	cle fibre	s?						
	(A)	Myoglobin content is very high									
	(B)	Amount of mitochondria is very high									
	(C)	They have very high concentration of endoplasmic reticulum									
	(D)	They are also called ae	robic muscle fib	res							
114.	In the dig	the digestive system of cockroach gastric caecae are present at the junction of:									
	(A)	Mid gut and hind gut	(B)	Hind g	gut and fore gut						
	(C)	Fore gut and mouth	(D)	Mid gu	ut and fore gut						
115.	On appli	cation of a stimulus on t	he axonal memb	rane:							
	(A)	There is a rapid influx	of K ⁺ at that site								
	(B)	There is a rapid efflux	of Na ⁺ at that sit	e							
	(C)	There is a rapid influx	of Na ⁺ at that site	e							
	(D)	There is a rapid efflux	of K^+ at that site								

116. All of the following are parts of forebrain, except

110.	All of the	c following are parts of fore	Jorann, except						
	(A)	Cerebellum	(B)	Corpus callosum					
	(C) Association areas (I		(D)	Hypothalamus					
117.	The eusta	achian tube connects	with the	:	:				
	(A)	External auditory canal, m	niddle ear cavi	ty					
	(B)	Middle ear cavity, pharyn	Х						
	(C)	External auditory canal, la	abyrinth						
	(D)	Cochlea, larynx							
118.	The horn	none which regulates the ba	asal metabolisr	n in our	body is secrete	d from:			
	(A)	Adrenal cortex (B) P	ancreas	(C)	Pituitary	(D)	Thyroid		
119.	Calcitoni	n is a thyroid hormone whi	ich:						
	(A)	Elevates calcium level in	blood	(B)	Has no effect on calcium				
	(C)	Elevates potassium level i	in blood	(D)	Lowers calcium level in blood				
120.	The gona	dotropic hormones are secr	reted by:						
	(A)	Anterior lobe of pituitary		(B)	Interstitial cell	ls of teste	s		
	(C)	Adrenal cortex		(D)	Posterior part	of thyroi	d6		
Vidyars since 1980 Classes since 1980 IIT JEE MEDICALIFOUNDATION									

అం అం End of Sample Paper | 1 Year Medical | Paper III లా లా లా



Answers to Sample Paper | 1 Year Medical

Sample Paper – III

РНҮ	SICS	CHEM	ISTRY	BIOLOGY				
1.	(B)	31.	(D)	61.	(D)	91. (A)		
2.	(B)	32.	(C)	62.	(A)	92. (D)		
3.	(B)	33.	(D)	63.	(C)	93. (A)		
4.	(C)	34.	(D)	64.	(C)	94. (D)		
5.	(B)	35.	(B)	65.	(C)	95. (C)		
6.	(A)	36.	(D)	66.	(C)	96. (C)		
7.	(D)	37.	(D)	67.	(D)	97. (D)		
8.	(A)	38.	(C)	68.	(C)	98. (C)		
9.	(D)	39.	(C)	69.	(A)	99. (D)		
10.	(A)	40.	(C)	70.	(A)	100. (C)		
11.	(C)	41.	(B)	71.	(D)	101.6 (C)		
12.	(C)	42.	(B)	72.		INCE 102. (A)		
13.	(D)	43.	(C)	73.	(A)	103. (C)		
14.	(B)	44.	(C)	74.5	- (D)	104. (C)		
15.	(B)	45.	(B)	75.	(C)	105. (B)		
16.	(C)	46.	(A)	76.	(A) DA	106. (B)		
17.	(D)	47.	(A)	77.	(D)	107. (D)		
18.	(C)	48.	(D)	CA-78.	(C)	108. (B)		
19.	(A)	49.	(D)	79.	(B)	109. (A)		
20.	(C)	50.	(D)	80.	(B)	110. (C)		
21.	(C)	51.	(C)	81.	(A)	111. (C)		
22.	(C)	52.	(B)	82.	(B)	112. (C)		
23.	(C)	53.	(A)	83.	(B)	113. (C)		
24.	(B)	54.	(C)	84.	(A)	114. (D)		
25.	(A)	55.	(C)	85.	(D)	115. (C)		
26. 27	(C)	56.	(D)	86.	(D)	116. (A)		
27.	(D)	57.	(C)	87.	(\mathbf{A})	117. (B)		
28.	(B)	58.	(C)	88.	(A)	118. (D)		
29.	(C)	59 .	(B)	89.	(D)	119. (D)		
30.	(A)	60.	(C)	90.	(B)	120. (A)		

34 YEARS LEGACY Over the last 3 decades, Vidyamandir Classes (VMC) has designed, delivered, innovated, and perfected the art and science of teaching. VMC provides guidance to students for excelling in engineering (JEE), medical (NEET) entrance exams and other competitive exams like NTSE, KVPY, Olympiads etc. 55+% Success VMC has produced Vidyamandir Classes SINCE 1986 17000+ IITians till date **Rate in NEET** IIT JEE | MEDICAL | FOUNDATION DELHI NCR Pitampura (H.O.), Anand Vihar, Dwarka, Faridabad, JAMMU SHAMLI Ghaziabad, Gr. Noida, Gurugram, Janakpuri, Noida, KATHUA Safdarjung Enclave, South Extn., Vikaspuri DEHRADUN HALDWANI BIJNOR MEERUT RUDRAPUR LUCKNOW PRAYAGRAJ VARANASI YAMUNANAGAR 0 KURUKSHETRA PANIPAT ROHTAK

VMC CENTRES ACROSS INDIA

HEAD OFFICE: Aggarwal Corporate Heights, 3rd Floor, Netaji Subhash Place, Opp. Wazirpur Depot, Pitampura, Delhi. Ph.: (011) 45221191-93

косні-

КОТТАУАМ