I-HCST-2022
 CLASS - XII-PASS: - (Physics, Chemistry \& Mathematics) (Class XII Moving to XII-PASS-PCM)

[SET-1]
 N-ACST (12-06-2022)

Time Duration: 1 Hour

Please read the instructions carefully. You are allotted 5 minutes specifically for this purpose.

INSTRUCTIONS:

1. This question paper contains 35 questions: Physics (Q. No. 1 to Q. No. 11), Chemistry (Q. No. 12 to Q. No. 22), Mathematics (Q. No. 23 to Q. No. 35)
2. There will be individual qualifying cut-offs for all sections.
3. For Each correct answer 4 marks will be awarded. No Negative Marking.
4. Use OMR-Sheet for answering
5. Use HB Pencil / Pen to darken the circles.
6. If you wish to change your answer, erase the already darkened circle completely and then darken the appropriate circle.
7. Use of a calculator and mobile phone is strictly prohibited during the exam.

> I have verified all the information filled in by the Candidate $. \ldots \ldots . ~$

PART - A : PHYSICS

1. A wire loop PQRSP is constructed by joining two semi-circular coils of radii r_{1} and r_{2} respectively as shown in the figure. If the current flowing in the loop is i, then magnetic induction at the point O is

(A) $\frac{\mu_{0} i}{4}\left[\frac{1}{r_{1}}-\frac{1}{r_{2}}\right]$
(B) $\frac{\mu_{0} i}{4}\left[\frac{1}{r_{1}}+\frac{1}{r_{2}}\right]$
(C) $\frac{\mu_{0} i}{2}\left[\frac{1}{r_{1}}-\frac{1}{r_{2}}\right]$
(D) $\frac{\mu_{0} i}{2}\left[\frac{1}{r_{1}}+\frac{1}{r_{2}}\right]$
2. Four condensers are joined as shown in the adjoining figure. The capacity of each is $8 \mu F$. The equivalent capacity between the points A and B will be

(A) $32 \mu \mathrm{~F}$
(B) $2 \mu F$
(C) $8 \mu F$
(D) $16 \mu F$
3. Force of attraction between two point electric charges placed at a distance d in a medium is F. What distance apart should these be kept in the same medium, so that force between becomes F/3?
(A) $2 \sqrt{3} d$
(B) $3 d$
(C) $9 d$
(D) $\sqrt{3} d$
4. Two charges are placed at certain distance apart. A perfectly insulating sheet is placed between them. The force between them will
(A) Increases
(B) Decreases
(C) Remains unchanged
(D) None of these
5. An object is placed at 20 cm from a convex mirror of focal length 10 cm . The image formed by the mirror is
(A) Real and at 20 cm from the mirror
(B) Virtual and at 20 cm from the mirror
(C) Virtual and at $20 / 3 \mathrm{~cm}$ from the mirror
(D) Real and at $20 / 3 \mathrm{~cm}$ from the mirror
6. Radius of curvature of concave mirror is 40 cm and the size of image is twice as that of object for the image to real, then the object distance is
(A) 60 cm
(B) 20 cm
(C) 40 cm
(D) 30 cm
7. Lyman series are found in \qquad region.
(A) Ultra violet
(B) Infrared
(C) Visible
(D) None
8. Domain formation is the necessary feature of
(A) Ferromagnetism
(B) Paramagnetism
(C) Diamagnetism
(D) All of these
9. A current of $\frac{25}{\pi} \mathrm{~Hz}$ frequency is passing though an AC circuit having series combination of $R=100 \Omega$ and $L=2 H$, the phase difference between voltage and current is
(A) 90°
(B) 60°
(C) 30°
(D) 45^{0}
10. An atom emits a spectral line of wavelength λ when an electron makes a transition between levels of energy E_{1} and E_{2}. Which expression correctly relates λ, E_{1} and E_{2} ?
(A) $\lambda=\frac{\mathrm{hc}}{\mathrm{E}_{1}+\mathrm{E}_{2}}$
(B) $\lambda=\frac{2 \mathrm{hc}}{\mathrm{E}_{1}+\mathrm{E}_{2}}$
(C) $\lambda=\frac{2 \mathrm{hc}}{\mathrm{E}_{1}-\mathrm{E}_{2}}$
(D) $\lambda=\frac{\mathrm{hc}}{\mathrm{E}_{1}-\mathrm{E}_{2}}$
11. Half life of a radioactive substance is 20 minutes. The time between 20% and 80% decay will be
(A) 20 minutes
(B) 40 minutes
(C) 30 minutes
(D) 25 minutes

PART - B : CHEMISTRY
12.

X and Y are respectively
(A)

(C)

(D)

13. The order of reactivities of the following alkyl halides for a $\mathrm{S}_{\mathrm{N}}{ }^{2}$ reaction is
(A) $\mathrm{RF}>\mathrm{RCl}>\mathrm{RBr}>\mathrm{RI}$
(B) $\mathrm{RF}>\mathrm{RBr}>\mathrm{RCl}>\mathrm{RI}$
(C) $\mathrm{RCI}>\mathrm{RBr}>\mathrm{RF}>\mathrm{RI}$
(D) $\mathrm{RI}>\mathrm{RBr}>\mathrm{RCI}>\mathrm{RF}$
14. $\mathrm{X}-\mathrm{NH}_{2} \xrightarrow[O H^{-}, a l c, \Delta]{\mathrm{CHCl}_{3}} \mathrm{X}-\mathrm{NC}$; rate of reaction is more of $\mathrm{X}-\mathrm{NH}_{2}$ is
(A)

(B)

(C)

(D)

15. Lucas test is done for
(A) alkyl halides
(B) alcohols
(C) acids
(D) aldehydes
16. The correct sequence of decrease in the bond angle of the following hydrides is - :
(A) $\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}$
(B) $\mathrm{NH}_{3}>\mathrm{AsH}_{3}>\mathrm{PH}_{3}>\mathrm{SbH}_{3}$
(C) $\mathrm{SbH}_{3}>\mathrm{AsH}_{3}>\mathrm{PH}_{3}>\mathrm{NH}_{3}$
(D) $\mathrm{PH}_{3}>\mathrm{NH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}$
17. False statement about $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{2}\right)_{2}\right]^{+}$is
(A) It is inner orbital complex with octahedral geometry
(B) It can shows linkage isomerism
(C) It shows geometrical isomerism
(D) Trans $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{2}\right)_{2}\right]^{+}$has optical activity
18. Chemical composition of 'slag' formed during the smelting process in the extraction of copper is
(A) $\mathrm{Cu}_{2} \mathrm{O}+\mathrm{FeS}$
(B) FeSiO_{3}
(C) CuFeS_{2}
(D) $\mathrm{Cu}_{2} \mathrm{~S}+\mathrm{FeO}$
19. $\mathrm{a} \neq \mathrm{b} \neq \mathrm{c}, \alpha=\gamma=90^{\circ}, \beta \neq 90^{\circ}$ represents -
(A) tetragonal system
(B) orthorhombic system
(C) monoclinic system
(D) triclinic system
20. Polymer used for making of computer discs is
(A) PHBV
(B) Bakelite
(C) Neoprene
(D) Perlon-L
21. Which of the following ions will exhibit colour in aqueous solutions?
(A) $\mathrm{Sc}^{3+}(\mathrm{Z}=21)$
(B) $\mathrm{La}^{3+}(\mathrm{Z}=57)$
(C) $\mathrm{Ti}^{3+}(\mathrm{Z}=22)$
(D) $\mathrm{Lu}^{3+}(\mathrm{Z}=71)$
22. Osmotic pressure of a solution (density is $1 \mathrm{~g} / \mathrm{ml}$) containing 3 g of glucose $($ molecular weight $=180)$ in 60 g of water at $15^{\circ} \mathrm{C}$ is -
(A) 0.34 atm
(B) 0.65 atm
(C) 6.25 atm
(D) 5.57 atm

PART-C:MATHEMATICS

23. Evaluate $\int_{0}^{\pi / 2} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x$
(A) $\frac{\pi}{4}$
(B) $\frac{\pi}{2}$
(C) zero
(D) 1
24. $f(x)=\left\{\begin{array}{cl}\frac{1}{|x|} & ,|x| \geq 1 \\ a x^{2}+b & ,|x|<1\end{array}\right.$ if $f(x)$ is continuous and differentiable every where then
(A) $a=\frac{1}{2}, b=-\frac{3}{2}$
B) $a=1 b=-1$
C) $a=b=1$
D) $a=-\frac{1}{2}, b=\frac{3}{2}$
25. The value of $\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{7}{8}$ is
(A) $\tan ^{-1} \frac{7}{8}$
(B) $\cot ^{-1} 15$
(C) $\tan ^{-1} 15$
(D) $\tan ^{-1} \frac{25}{24}$
26. If $\mathrm{P}(\mathrm{A})=\frac{3}{10}, \mathrm{P}(\mathrm{B})=\frac{2}{5}$ and $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\frac{3}{5}$, then the value of $\mathrm{P}(\mathrm{B} / \mathrm{A})+\mathrm{P}(\mathrm{A} / \mathrm{B})$ is equal to
(A) $\frac{1}{4}$
(B) $\frac{1}{3}$
(C) $\frac{5}{12}$
(D) $\frac{7}{12}$
27. If $\mathrm{A}=\left[\begin{array}{cc}1 & 0 \\ -1 & 7\end{array}\right]$ and $\mathrm{A}^{2}=8 \mathrm{~A}+\mathrm{KI}_{2}$, then k is equal to
((A) -1
((B) 1
((C) -7
((D) 7
28. $\int \frac{x^{3}}{x+1}$ is equal to
(A) $x+\frac{x^{2}}{2}+\frac{x^{3}}{3}=\log |1-x|+C$
(B) $x+\frac{x^{2}}{2}-\frac{x^{3}}{3}-\log |1-x|+C$
(C) $x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\log |1+x|+C$
(D) $x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\log |1+x|+C$
29. If the equation of the normal to the curve $y=(1+x)^{y}+\sin ^{-1}\left(\sin ^{2} x\right)$ at $x=0$ is $x+y=k$, then k is
(A) 1
(B) 2
(C) 3
(D) 4
30. Distance between two parallel planes $2 x+y+2 z=8$ and $4 x+2 y+4 z+5=0$ is
(A) $\frac{3}{2}$
(B) $\frac{5}{2}$
(C) $\frac{7}{2}$
(D) $\frac{9}{2}$
31. Let R be the real line. Consider the following subsets of the plane $R \times R$
$\mathrm{S}=\{(x: y) ; y=x+1$ and $0<x<2\}$
$\mathrm{T}=\{(x: y) ; x-y$ is aninteger $\}$
Which of the following is true
(A) T is an equivalence relation on R but S is not
(B)Neither S nor T is an equivalence relation
(C)Both S and T are equivalence relation on R .
(D) S is an equivalence relation but T is not.
32. Minimize $Z=13 x-15 y$ subject to the constrains $x+y \leq 7,2 x-3 y+6 \geq 0, x \geq 0, y \geq 0$
(A)-23
(B)-32
(C) -30
(D) 34
33. Over the interval $\left(\frac{1}{2013 \pi}, \frac{1}{2007 \pi}\right)$, the function $\frac{\cos x}{\sin \left(\frac{1}{x}\right)}$ is discontinuous at K points then K must be equal to \qquad
(A) 4
(B) 5
(C) 6
(D)
34. The non-zero vectors \vec{a}, \vec{b} and \vec{c} are related by $\vec{a}=8 \vec{b}$ and $\vec{c}=-7 \vec{b}$, then the angle between \vec{a} and \vec{c} is
(A) π
(B) 0
(C) $\frac{\pi}{4}$
(D) $\frac{\pi}{2}$
35. If $\Delta_{1}=\left|\begin{array}{ccc}1 & 1 & 1 \\ \mathrm{a} & \mathrm{b} & \mathrm{c} \\ \mathrm{a}^{2} & \mathrm{~b}^{2} & \mathrm{c}^{2}\end{array}\right|, \Delta_{2}=\left|\begin{array}{lll}1 & \mathrm{bc} & \mathrm{a} \\ 1 & \mathrm{ca} & \mathrm{b} \\ 1 & \mathrm{ab} & \mathrm{c}\end{array}\right|$, then
(A) $\Delta_{1}+\Delta_{2}=0$
(B) $\Delta_{1}+2 \Delta_{2}=0$
(C) $\Delta_{1}=\Delta_{2}$
(D) $\Delta_{1}=2 \Delta_{2}$
