

N-ACST-2022

CLASS – XII-PASS: - (Physics, Chemistry & Mathematics)

(Class XII Moving to XII-PASS-PCM)

(SET-1) N-ACST (12-06-2022)

Time Duration: 1 Hour

Maximum marks: 140

Please read the instructions carefully. You are allotted 5 minutes specifically for this purpose.

INSTRUCTIONS:

- This question paper contains 35 questions: Physics (Q. No. 1 to Q. No. 11), Chemistry (Q. No. 12 to Q. No. 22), Mathematics (Q. No. 23 to Q. No. 35)
- 2. There will be individual qualifying cut-offs for all sections.
- 3. For Each correct answer 4 marks will be awarded. No Negative Marking.
- 4. Use OMR-Sheet for answering
- 5. Use HB Pencil / Pen to darken the circles.
- 6. If you wish to change your answer, erase the already darkened circle completely and then darken the appropriate circle.
- 7. Use of a calculator and mobile phone is strictly prohibited during the exam.

CAPITAL LETTERS
A GROU
I have verified all the information filled in by the Candidate
Signature of Invigilator
an 19 an the second

www.narayanacoachingcenters.in

TOLL FREE: 1800 102 3344

PART - A : PHYSICS

1. A wire loop PQRSP is constructed by joining two semi-circular coils of radii r_1 and r_2 respectively as shown in the figure. If the current flowing in the loop is i, then magnetic induction at the point O is

N-ACST	r – 2022			Class XII-P-PCM
8.	Domain formation is the	ne necessary feature of		
	(A) Ferromagnetism	(B) Paramagnetism	(C) Diamagnetism	(D) All of these
9.	A current of $\frac{25}{\pi}$ Hz frequency is passing though an AC circuit having series combination			
	of $R = 100 \Omega$ and $L = (A) 90^0$	2 H, the phase difference $(B) 60^{\circ}$	the between voltage and curve $(C) 30^0$	arrent is (D) 45°
10.	An atom emits a spectr	al line of wavelength λ	when an electron makes	a transition
	between levels of energy	gy E_1 and E_2 . Which ex	pression correctly relate	s λ , E_1 and E_2 ?
	(A) $\lambda = \frac{hc}{E_1 + E_2}$	(B) $\lambda = \frac{2hc}{E_1 + E_2}$	(C) $\lambda = \frac{2hc}{E_1 - E_2}$	(D) $\lambda = \frac{hc}{E_1 - E_2}$
11.	Half life of a radioactiv will be	ve substance is 20 minut	tes. The time between 20	% and 80% decay
	(A) 20 minutes	(B) 40 minutes	(C) 30 minutes	(D) 25 minutes
	5		17	
		PART - B: CHE	MISTRY	
10	Alc.KOF	NaNH ₂ V		
12.		CH ₃ CH ₂ Br 1		
	X and Y are respective	ly		
	C≡C-Br	$C \equiv C - C_2 H_5$	C = CH	
	$(A) \checkmark , \land \land$		(D) 🗸	,
	\bigcirc			
	CH = CH ₂	CH ₂ -CH ₃	C≡CH	
		\bigcirc		
	(C) ,	\checkmark	(D) V,	
	$C \equiv C - C_2 H_5$			
	\bigvee			
	*			

N-ACST - 2022

N-ACS	T – 2022				Class XII-P-F
13.	. The order of reactivities of the following alkyl halides for a S_N^{2} reaction is				ion is
	(A) RF > RCl > RBr > R	I	(B)	RF > RBr > R	Cl > RI
	(C) RCI > RBr > RF > R	I	(D)	RI > RBr > RC	CI > RF
14.	$X-NH_2 \xrightarrow{CHCl_3} X$	-NC: rate of reaction	on is more	of X–NH2 is	
	$-OH^-, alc, \Delta$	OCH ₃		NO ₂	C(CH ₃) ₃
	\downarrow			\downarrow	\downarrow
		\bigcirc		\bigcirc	\bigcirc
				1	
	(A) NH_2	(B) NH ₂	(C)	NH ₂	(D) ^{NH} 2
15.	Lucas test is done for			Y	
10.	(A) alkyl halides	(B) alcohols	(C)	acids	(D) aldehydes
16.	The correct sequence of	decrease in the bon	d angle of	the following h	ydrides is - :
	(A) NH ₃ > PH ₃ > AsH ₃ :	> SbH ₃	(B	$\mathbf{S}) \mathbf{NH}_{3} > \mathbf{AsH}_{3}$	> PH ₃ > SbH ₃
	(C) $SbH_3 > AsH_3 > PH_3$	> NH ₃	(L	D) PH ₃ > NH ₃ >	$AsH_3 > SbH_3$
	*				
17.	False statement about [C	o(NH ₃) ₄ (NO ₂) ₂] ⁺ is	·····		
	(A) It is inner orbital cor (D) It is $1 \text{ and } 1$	nplex with octahed	ral geometi	ry	
	(B) It can shows linkage	isomerism			
	(C) It shows geometrical (D) Trans [Co(NHa) (N)	1somerism	tivity.		
18	(D) Trails [CO(INT3)4(INC Chemical composition of	f'_{2} into optical at formed dur	ing the sme	lting process in	the extraction of
10.	copper is	i slag tormed dur	ing the since	ning process in	the extraction of
	(A) $Cu_2O + FeS$	(B) FeSiO ₃	(C) CuFe	S_2 (D) Cu_2S	+ FeO
19.	$a \neq b \neq c, \alpha = \gamma = 90^\circ, \beta$	≠ 90° represents -			
	(A) tetragonal system	· · · · · · · · · · · · · · · · · · ·	(B) ortho	rhombic system	l
	(C) monoclinic system		(D) triclir	nic system	
20	Dolymon used for mel-in	of computer direct	in		
20.	(A) PHRV	(B) Bakelite	15 (C) N	Veonrene	(D) Parlon I
		(D) Dakelle	(\mathbf{C})	veoprene	(D) renoil-L

N-ACST - 2022

21.	Which of the following ions will exhibit colour in aqueous solutions?			
	(A) Sc^{3+} (Z = 21)	(B) La^{3+} (Z = 57)	(C) $Ti^{3+}(Z=22)$	(D) Lu^{3+} (Z = 71)

22. Osmotic pressure of a solution (density is 1g/ml) containing 3 g of glucose (molecular weight = 180) in 60 g of water at 15°C is (A) 0.34 atm
(B) 0.65 atm
(C) 6.25 atm
(D) 5.57 atm

PART - C: MATHEMATICS 23. Evaluate $\int_{0}^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$ (A) $\frac{\pi}{4}$ (C) zero (B) $\frac{\pi}{2}$ (D) 1 24. $f(x) = \begin{cases} \frac{1}{|x|} & |x| \ge 1 \\ ax^2 + b & |x| < 1 \end{cases}$ if f(x) is continuous and differentiable every where then (A) $a = \frac{1}{2}, b = -\frac{3}{2}$ B) a = 1b = -1 C) a = b = 1 D) $a = -\frac{1}{2}, b = \frac{3}{2}$ The value of $\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3} + \tan^{-1}\frac{7}{8}$ is 25. (A) $\tan^{-1}\frac{7}{8}$ (B) $\cot^{-1}15$ (D) $\tan^{-1}\frac{25}{24}$ (C) $\tan^{-1}15$ If $P(A) = \frac{3}{10}$, $P(B) = \frac{2}{5}$ and $P(A \cup B) = \frac{3}{5}$, then the value of P(B/A) + P(A/B) is equal 26. to (A) $\frac{1}{4}$ (B) $\frac{1}{3}$ (C) $\frac{5}{12}$ (D) $\frac{7}{12}$

27.	If $A = \begin{vmatrix} 1 & 0 \\ -1 & 7 \end{vmatrix}$ and $A^2 = 8A + KI_2$, then k is equal to				
	((A) -1	((B) 1	((C) -7	((D) 7	
28.	$\int \frac{x^3}{x+1}$ is equa	al to			
	(A) $x + \frac{x^2}{2} + \frac{x}{3}$	$\frac{3}{6} = \log 1 - x + C$	(B) $x + \frac{x^2}{2} - \frac{x^2}{2}$	$\frac{x^3}{3} - \log 1 - x + C$	
	(C) $x - \frac{x^2}{2} - \frac{x^3}{3}$	$-\log 1+x +C$	(D) $x - \frac{x^2}{2} +$	$\frac{x^3}{3} - \log 1 + x + C$	
29.	If the equation	of the normal to the	e curve $y = (1+x)^y + s$	$\sin^{-1}\left(\sin^2 x\right) \text{at} x = 0 \text{ is } x = 0$	+ y = k,
	then k is (A)1	(B)2	(C)3	(D)4	
30.	Distance betwee	n two parallel <mark>planes</mark> 2	x + y + 2z = 8 and $4z$	x + 2y + 4z + 5 = 0 is	
	$(A)\frac{3}{2}$		$(B)\frac{5}{2}$		
	(C) $\frac{7}{2}$		(D) $\frac{9}{2}$		
31.	Let R be the re S= $\{(x: y); y =$	al line. Consid <mark>er the</mark> for $x + 1$ and $0 < x < 2$	llowin <mark>g subsets o</mark> f the	e plane $R \times R$	
	$\mathbf{T} = \big\{ \big(x \colon y \big); x \big\}$	- y is an integer }			
	Which of the for (A)T is an equi- (B)Neither S no (C)Both S and (D) S is an equi-	ollowing is true valence relation on R b or T is an equivalence r T are equivalence relat ivalence relation but T	out S is not relation ion on R. is not.		
32.	Minimize $Z =$ (A)-23	13x - 15y subject to the (B)-32	e constrains $x + y \le 7$ (C)-30	$y, 2x - 3y + 6 \ge 0, x \ge 0, y$ (D)-34	≥0
	(1) =0		(0) 50		

- 33. Over the interval $\left(\frac{1}{2013\pi}, \frac{1}{2007\pi}\right)$, the function $\frac{\cos x}{\sin\left(\frac{1}{x}\right)}$ is discontinuous at K points then K must be equal to ______(A)4 (B)5 (C)6 (D)
- 34. The non-zero vectors \vec{a}, \vec{b} and \vec{c} are related by $\vec{a} = 8\vec{b}$ and $\vec{c} = -7\vec{b}$, then the angle between \vec{a} and \vec{c} is

between a and c is (A) π (B) 0 (C) $\frac{\pi}{4}$ (D) $\frac{\pi}{2}$

35. If
$$\Delta_1 = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix}$$
, $\Delta_2 = \begin{vmatrix} 1 & bc & a \\ 1 & ca & b \\ 1 & ab & c \end{vmatrix}$, then
(A) $\Delta_1 + \Delta_2 = 0$ (B) $\Delta_1 + 2\Delta_2 = 0$ (C) $\Delta_1 = \Delta_2$

$$= 0 \qquad (C) \ \Delta_1 = \Delta_2 \qquad (D) \ \Delta_1 = 2\Delta_2$$