

Corporate Office: 44-A/1, Kalu Sarai, New Delhi 110016 | Web: www.meniit.com

PHYSICS

1. Two wooden blocks are moving on a smooth horizontal surface such that the mass m remains stationary with respect to the block of mass M as shown in figure. The magnitude of force P is:

- 11. A ball of mass m_1 makes a head on elastic collision with a ball of mass m_2 which is initially at rest. The transfer of kinetic energy to the second ball is maximum when:
 - (A) $m_1 >> m_2$ (B) $m_1 = m_2$ (C) $m_1 << m_2$ (D) $m_1 \le m_2$
- 12. If θ be the angle between two vectors \vec{P} and \vec{Q} , then $\vec{P} \cdot (\vec{Q} \times \vec{P})$ is equal to
 - (A) zero (B) $P^2Q\cos\theta$ (C) $PQ^2\sin\theta$ (D) PQ^2
- **13.** A sealed tank containing a liquid of density ρ moves with a horizontal acceleration *a*, as shown in the figure. The difference in pressure between the points *A* and *B* is:

(D)

 $h\rho g + L\rho a$

- (A) \sqrt{h} (B)
- (C) $h^{3/2}$
- **15.** A particle of mass m with velocity v collides head on with another identical mass at rest elastically. The velocity of the first particle just after collision is

(D)

 h^2

- (A) 2v (B) v (C) v/2 (D) Zero
- **16.** A reference frame attached to the earth:
 - (A) is an inertial frame by definition
 - (B) cannot be an inertial frame because the earth is revolving round the sun
 - (C) is an inertial frame because Newton's law are applicable in this frame
 - (D) is an inertial frame because the earth is rotating about its own axis
- 17. A man pushes a wall and fails to displace it. Work done by him is:
 - (A) zero (B) negative
 - (C) maximum (D) positive, but not maximum

18. Centre of mass is a point:

- (A) which is geometric centre of a body
- (B) from which distance of particles are same
- (C) where the whole mass of the body is supposed to concentrated
- (D) which is the origin of reference frame
- **19.** The angular momentum of a moving body remains constant if:
 - (A) net external force is applied (B) net pressure is applied
 - (C) net external torque is applied (D) net external torque is not applied
- **20.** A gas flows with a velocity v along a pipe of cross-sectional area *S* and bent an angle of 90° at a point *A*. What force does the gas exert on the pipe at *A* if its density is ρ ?
 - (A) $\frac{\sqrt{2} Sv}{\rho}$ (B) $\sqrt{2} Sv^2 \rho$ (C) $\frac{\sqrt{3} Sv^2 \rho}{2}$ (D) $\sqrt{3} Sv^2 \rho$

30.		2m' and mass 0.5 kg 60° is (g = 10 m/s ²)	-		shown in	figure. The increase in potential
			1 2m	60°		
	(A) 1.25 J	(B) 2.5 J	•	(C) 5 J		(D) 10 J
			CHE	MISTRY		
31.	Total number of pr	otons in 10 g CaCO ₃	are			
51.	(A) 4.011×10^{24}	-		3.0115×10 ²⁴	(D)	7×10^{24}
32.		f spectral lines emitte	ed during	the transition of	f an elect	tron from 5 th shell to 2 nd shell are
	(A) 11	(B) 12	(C)	8	(D)	6
33.	Maximum covalene	cy of N and B respec	tively are	e		, O
	(A) 5, 3	(B) 3, 1	(C)	3, 3	(D)	4, 4
34.	-		pressure	of 1atm, the syst	tem volu	me changes from 3 litres to 10 litres.
	The change in inter (A) 993 kJ	(B) 4 kJ	(C)	– 6 kJ	(D)	0.29 kJ
35.		containing 2M acetic				
	(K _a for CH ₃ COOH	-				
	(A) 3.74	(B) 5.04	(C)	4.74	(D)	5.26
36.	The total number o	f angular nodes in th	e 3p orbit	tals are		
	(A) 0	(B) 1	(C)	2	(D)	3
37.				ement is [Ar]3d'	4s ² . The	atomic number of an element lying
	(A) 40	nent in its group will (B) 45	(C)	49	(D)	54
38.	The hybridization of			.,		
	(A) sp^3	(B) $sp^{3}d$	(C)	sp ³ d ³	(D)	sp ³ d ²
39.	Which of the follow	wing is diamagnetic?				
	(A) O ₂	(B) O_2^+	(C)	O_2^{-}	(D)	${\rm O_2}^{2-}$
40.	Which of the follow	wing are isoelectric s		_		
	(A) BH_4^-, CH_4 and	$\rm NH_4^+$	(B)	CO_3^{2-}, NO_3^{-} a	nd BO ₂	
	(C) CO_2, N_3^- and 1		(D)	All of these	2	
41.		100_2 of increasing covalent				
71.	(A) $AlF_3 < AlCl_3 <$	C	(B)	$AlF_3 > AlBr_3$	< AICI	< All.
	(C) $AlF_3 < AlBr_3 < C$	5 5	(D)	$All_{3} > AlBr_{3}$ $All_{3} < AlBr_{3}$	5	5
	(C) $\operatorname{All}_3 < \operatorname{AlDI}_3 <$	$AII_3 \setminus AICI_3$	(D)	$\operatorname{AID}_3 \smallsetminus \operatorname{AIDI}_3 \checkmark$		

42.		np between the value ch of the following el			onizatior	n energies of an element would be			
	(A) $1s^2 2s^2 2p^6 3s^1$		(B)	$1s^{2}2s^{2}2p^{6}3s^{2}3$	p^1				
	(C) $1s^2 2s^2 2p^6 3s^2 3p^6$) ⁶	(D)	$1s^{2}2s^{2}2p^{6}3s^{2}$					
43.	When enthalpy and	entropy change for a	chemica	al reaction are -2	2.5×10^{5}	cal and 7.4 cal deg $^{-1}$ respectively,			
	the reaction at 298 l	K would be							
	(A) Spontaneous		(B)	Reversible					
	(C) Irreversible		(D)	Non-spontaneo	ous				
44.	-	n of HCl is 4. The mo	-			•			
	(A) 4.0	(B) 0.4	(C)	0.0001	(D)	0.04			
45.	In $C + H_2O \longrightarrow C$	$CO + H_2$, H_2O acts as	S						
	(A) Oxidizing agent	t	(B)	Reducing agen	t				
	(C) Both		(D)	None of these					
46.	Which hydrogen lik	te species will have sa	ame radi	us as that of first	Bohr's	orbit of hydrogen atom?			
	(A) $n = 2, H$	(B) $n = 2, He^+$	(C)	$n = 2, Li^{++}$	(D)	$n = 2, Be^{3+}$			
47.	Which has maximum	m number of atoms?							
	(A) 4 gm of H_2	(B) 32 gm of O_2	(C)	44 gm of CO_2	(D)	$64 \text{ gm of } SO_2$			
48.	For the reversible re								
	$\begin{array}{c} \mathrm{NH}_{4}^{+} + 2\mathrm{H}_{2}\mathrm{O} \rightleftharpoons \mathrm{NH}_{4}\mathrm{OH} + \mathrm{H}_{3}\mathrm{O}^{+} & \mathrm{K}_{1} \\ \mathrm{NH}_{4}^{+} + \mathrm{OH}^{-} \rightleftharpoons \mathrm{NH}_{4}\mathrm{OH} & \mathrm{K}_{2} \end{array}$								
	then K ₃ of the reaction: $H_2O + H_2O \implies H_3O^+ + OH^-$ is:								
	(A) $K_3 = K_1 K_2$	(B) $K_3 = \frac{K_2}{K_1}$	(C)	$\mathbf{K}_3 = \frac{\mathbf{K}_1}{\mathbf{K}_2}$	(D)	$\mathbf{K}_3 = \frac{1}{\mathbf{K}_1 \mathbf{K}_2}$			
49.						d three bond pairs of electrons			
	(A) H ₂ S	(B) AlCl ₃	(C)	NH ₃	(D)	BF ₃			
50.	The hydrogen ion c	oncentration of 0.1 N	solution	of CH ₃ COOH,	which i	s 30% dissociated is			
	(A) 0.03	(B) 3.0	(C)	0.3	(D)	30.0			
51.	When a liquid boils								
	(A) an increase in e		(B)	a decrease in en	1 5				
	(C) an increase in h	-	(D)	an increase in f					
52.	-					ment x mol of A is mixed with same			
			-			ned. The value of x will be 4.5			
	(A) 2.5	(B) 3.5	(C)	4.0	(D)	4.5			
53.		g_2CO_3 is S. The K_{sp}			<u> </u>	2			
54.	(A) 2S Which combination	(B) S^2 of the compounds ar	(C) nd their g	$4S^3$ geometry is not co	(D) orrect?	$2S^2$			
	(A) HgCl ₂ -linear		(B)	ClF ₃ -V-shaped	ł				
	(C) BrF ₃ -T-shaped		(D)	ICl ₄ ⁻ -square pla	anar				

6

55.	Which is not an int	ensive property?					
	(A) boiling point		(B)	refract	ive index		
	(C) molarity		(D)	volum	e		
56.	Which is not amph	oteric?					
	(A) HSO ₄ ⁻	(B) $H_2PO_2^-$	(C)	H ₂ O	(D)	NH ₃	
57.	The first ionization	potential of Mg, Al	, P and S	follows t	he order		
	(A) $Mg < Al < P <$	S	(B)	Al < N			
	(C) $Al < Mg < S <$	Р	(D)	Mg <	Al < S < P		
50	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		nd state a	lastrania	a an fi annation	a f witna a a	a haaanaa it mialataa
58.						of miroge	n because it violates
	(A) Aufbau princip		(B)	Hund'			
70	(C) Pauli's princip		(D)	Uncer	tainty principle	;	
59.		lowing energy is abs		0-	o^2 (D)	Т	
(0	(A) $F - F^-$	(B) $Cl \rightarrow Cl^{-}$	(C)	$0^{-} \rightarrow$		$\mathrm{H} \rightarrow$	H
60.	(A) NaCl $<$ NH ₄ C	olution of the follow: $1 < N_2 C N < U C I$	•		1 In the order $1 \text{ NH}_4 \text{ Cl} < \text{NaC}$		
			(B)				
	(C) NaCN $<$ NH ₄ C	LI < NaCI < HCI	(D)	HCI<	$NaCN < NH_4$	CI < NaC	
			BIC	LOC	Y		
61.	Find out the corr	ect sequence of taxo	nomic cat	tegories i	n ascending or	der:	
	(A) Species	\rightarrow Family \rightarrow Genus		(B)	Kingdom \rightarrow	$Class \rightarrow 1$	Division
	(C) Order \rightarrow	\cdot Class \rightarrow Division		(D)	Genus →Cla	$ss \rightarrow Orc$	ler
62.	Animals are clas	sified into hierarchic	al group.	In which	one of the fol	lowing, tl	ne largest number of species
	are found?				T ''		
	(A) Genus	(B) Orde		(C)	Family	(D)	Class
63.		rye is caused by a sp			<i>C</i> 1 ·		
	(A) Rhizopu		0	(C)	Claviceps	(D)	Phytopthora
64.		e following is a slime m (B) <i>Thio</i>	e mould? <i>bacillus</i>	(\mathbf{C})	Anghaona	(D)	Dhizonus
	(A) Physaru			(C)	Anabaena	(D)	Rhizopus
65.		e following statement pleomorphic	ts about n	nycoplas: (B)	ma is wrong? They are sen	citiva to r	onicillin
	· · ·	spicomorphic use diseases in plants		(D)	They are also	-	
66.		lowing is not a group			.,		
00.		lomonas, Volvox	of green	(B)	Ulothrix, Spi	rogvra	
	(C) Gelidiun			(D)	Chlamydomo		Chara
67.	In <i>Pteris</i> , the roo	ts are:					
67.				(B)	Coralloid roo Rhizoids	ots	

Sample Paper (SET-1) | NEET

68.	Walk	ing ferns belong	s to the g	genus:							
	(A)	Adiantum	(B)	Dryopteris	(C)	Pteris	(D)	Marsilea			
69.		oots in gymnosp N ₂ fixing cyanol		generally	_ and in C	<i>ycas</i> small spec	vialised roo	ots called	_ are associated		
	(A)	Adventitious,	coralloi	d roots	(B)	Tap, corallo	id roots				
	(C)	Adventitious,	mycorrh	izal roots	(D)	Tap, haustor	ial roots				
70.	Bienr	nials are the plan	ts which	:							
	(A)	Complete the	ir life cy	cle in one grow	ving seaso	n only					
	(B)	Remain veget	ative in a	first growing s	eason and	produce flower	rs in the n	ext season			
	(C)	Produce flow	ers twice	during that lif	e cycle						
	(D)	Produce flow	ers many	times during	their life ti	ime					
71.		the placenta is a tile, as in:	axial and	the ovules are	attached	to it in a multile	ocular ova	ry, the place	entaion is said to		
	(A)	China rose	(B)	Tomato	(C)	Lemon	(D)	All of the	se		
72.	Whor	led phyllotaxy o	f leaves	is characteristi	cs of:			7			
	(A)	Hibiscus	(B)	Brassica	(C)	Alstonia	(D)	Calotropi	S		
73.	Grou	nd tissue of leaf	is:								
	(A)	Collenchyma	tous		(B)	Parenchyma	tous				
	(C)	Called cortex			(D)	Always diffe	erentiated				
74.		udying the T.S. ent radii. This or			ound xyler	n and phloem a	ire arrange	ed in an alter	rnate manner on		
	(A)	Dicot root	(B)	Dicot leaf	(C)	Monocot ste	m (D)	Dicot ster	n		
75.	Why	Calvin cycle is c	alled C3	-cycle?	4						
	(A)	2		is C3 compou	nd						
	(B)										
	(C)			PGA which is	a C3 com	pound					
-	(D)	None of the a	bove								
76.	In stro (A)		ctions in	corporate CO.	into the r	plant leading to	ATP and	NADH, for	mation		
	(A) (B)			-	_	leading to the					
	(D)	forms starch			into plun	i reading to the	synthesis	or sugar, wi	ion in turn,		
	(C)	light energy i	s capture	d to form gluc	ose						
	(D)			e splitted and H							
77.		le sheath cells of	f C4 -pla	nts are rich in		-	duo o o u o a o				
		EP carboxylase hosphofructokin	250		(B) (D)	Malate dehy RuBisCO	arogenase	;			
78.		alised cells calle		evsts are prese		Kubiseo					
	(A)	dinoflagellate			(B)	chrysophyte	S				
	(C)	archaebacteri			(D)	cyanobacteri					
79.	Metha	anogens belong	to								
	(A)	eubacteria			(B)	archaebacter					
	(C)	dinoflagellate	s		(D)	slime mould	S				

- 80. In fungi, the various types of spores are produced in distinct structures known as
 - (A) fruiting body
 - (C) peristome

- (B) spore sac(D) pollen sac
- 81. For naming different families in taxonomy.
 - (A) Animal families ends with suffix idea
 - (B) Plant families ends with suffix aceae
 - (C) Both vegetative and reproductive features are taken as the basis of plant classification
 - (D) All of the above
- 82. Species is considered as
 - (A) The largest taxon of taxonomy/classification
 - (B) The smallest taxon of taxonomy/classification
 - (C) Both smallest and the largest unit of taxonomy/classification
 - (D) None of the above
- **83.** PS-I is located on the
 - (A) non-appressed part of grana thylakoids
 - (B) stroma thylakoids
 - (C) appressed part of grana thylakoids
 - (D) Both (A) and (B)
- 84. Emerson's enhancement effect and red drop have been instrumental in the discovery of
 - (A) two photosystems operating simultaneously
 - (B) photophosphorylation and cyclic electron transport
 - (C) photophosphorylation
 - (D) photophosphorylation and non-cyclic electron transport
- 85. The most obvious and technically complicated feature of all living organisms is:
 - (A) Reproduction (B) Growth
 - (C) Ability to sense their environment (D) Photosynthesis
- 86. In bacteria pili and fimbriae are surface structures and they:
 - (A) play a role in motility.
 - (B) play a role in sexuality.
 - (C) help attach the bacteria to rocks in streams
 - (D) all of these
- 87. In Z-scheme of light reaction, the participating pigment systems is/are
 - (A) PS-I and PS-II
 - (B) PS-III
 - (C) Carotenoid and xanthophyll
 - (D) PS-II
- **88.** Which of these may not be an economic importance of bryophytes?
 - (A) Food for animals like birds
 - (B) Peat formation used as fuel
 - (C) In older times, *Sphagnum* was used in place of absorbant cotton
 - (D) Mosses along with lichens are the first organisms to colonise rocks
- **89.** In maize, the fibrous roots develop from:
 - (A) Lower nodes (B) Upper nodes (C) Upper internodes (D) None of the above
- 90. Light compensation point is the point where
 - (A) gaseous exchange occurs in photosynthesis
 - (B) gaseous exchange does not occur in photosynthesis
 - (C) gaseous exchange reduces in photosynthesis
 - (D) light intensity become appropriate for photosynthesis

91.		enetic material is basically naked, not su	rrounded	l by nuclear membrane
		esosome is present		
		e features are true for Plants	(D)	Animals
	(A)		(B)	
	(C)	Fungi	(D)	Bacteria
92.		olus is the site for	(D)	DNA synthesis
	(A)	tRNA synthesis	(B)	rRNA synthesis
	(C)	Aerobic respiration	(D)	Carbohydrate synthesis
93.		nes which catalyse joining of C-S bond f		
	(A)	Transferases	(B)	Lyases
	(C)	Hydrolases	(D)	Ligases
94.		is the innermost portion of mature plant of		
	(A)	Primary cell wall	(B)	Secondary cell wall
	(C)	Middle lamella	(D)	Tonoplast
95.		hemical substance most abundantly prese		
	(A)	Calcium pectate Lignin	(B)	Suberin
96.	(C) Mitos	is differs from meiosis in:	(D)	Calcium phosphate
90.	(A)	Forming four haploid cells	(B)	Pairing of homologous chromosomes
	(\mathbf{C})	Doubling of each chromosome and each		
	(C) (D)	Duplication of chromosomes and subs		
97.	· /	n of these is a non-reducing sugar?	1	
	(A)	Sucrose (B) Glucose	(C)	Fructose (D) Maltose
98.	Why a	are amino acids also called α -amino acids	s?	40
	(A)	They have α -carbon with amino & ac	id group.	
	(B)	They are rotated clockwise.	4	
	(C)	They are rotated anti-clockwise.		
	(D)	They rotate the plane of polarized ligh	t to the i	right.
99.	Metar	nerism is absent in:		
	(A)	Platyhelminthes (B) Annelida	(C)	Arthropoda (D) Chordata
100.		n of the following combination of phylun	n and its	characteristic is incorrect?
	(A)	Young Echinodermata – Bilateria	(B)	Porifera – Gastrovascular cavity
	(C)	Platyhelminthes – Flatworms	(D)	Nematoda – Roundworms, pseudocoelomate
101.		-	-	argaff within any double stranded DNA molecule?
	(A)	T = C, A = G	(B)	A = C, C = T
	(C)	$\mathbf{A} + \mathbf{T} = \mathbf{C} + \mathbf{G}$	(D)	$\mathbf{A} + \mathbf{G} = \mathbf{T} + \mathbf{C}$
102.		omere splits and chromatids separate in		
	(A)	Metaphase I	(B)	Anaphase I
	(C)	Metaphase II	(D)	Anaphase II
103.	Whicl	h are the three main layers that form the c		
	(A)	Thin squamous epithelium of alveoli, l	basemen	t membrane of bronchioles and basement substance
	(B)	Thin squamous epithelium of alveoli, e	endotheli	ium of alveolar capillaries and the basement
		substance		
	(C)	Basement substance, cuboidal epithelin	um of alv	veoli and stratified epithelium of bronchiole
	(D)	Ciliated epithelium of trachea, endothe	lium of	capillaries and basement substance

10

- 104. Pneumotaxic centre can moderate the functions of respiratory rhythm centre by:
 - Reducing the duration of inspiration (A)
 - Increasing the duration of inspiration only (B)
 - (C) First increasing and then reducing the duration of expiration
 - Increasing the duration of expiration only (D)
- 105. An Rh negative mother is pregnant for the first time with an Rh positive fetus. Just prior to birth some fetal blood cells cross the placenta into the mother. Which of the following will occur?

8

- (A) The fetus will die before birth
- (B) The mother will become Rh positive
- The mother will produce Rh antibodies (C)
- The fetal red blood cells will become Rh negative (D)
- 106. Which of the following best describes a artery?
 - Thin-walled, elastic, and equipped with valves (A)
 - (B) Thick-walled, elastic, and high pressure flow
 - Thin-walled, muscular, and supplied with nerves (C)
 - Thick-walled, muscular, and low pressure flow (D)
- UNDATIO 107. How many molecules of oxygen are carried by one molecule of haemoglobin.
 - (A) 6 (B)
 - (C) 2 (D) 4
- About 97% of O₂ is transported by RBC. The remaining 3% is 108.
 - (A) dissolved in plasma and transported
 - **(B)** remains in lungs
 - attached to cell membranes (C)
 - (D) inside the mitochondria
- 109. Select the taxon mentioned that represents both marine and fresh water species:
 - (A) Echinoderms **(B)** Ctenophora
 - (C) Cephalochordata (D) Cnidaria
- 110. The essential chemical components of many coenzymes are:
 - (A) Nucleic acids
 - Vitamins (D) Proteins (C)
- Transition state structure of the substrate formed during an enzymatic reaction is: 111.
 - Permanent but unstable Transient and unstable (A) **(B)**
 - (C) Transient but stable Permanent and stable (D)
- 112. Spindle fibres attach on to:
 - (A) Kinetosome of the chromosome (B) Telomere of the chromosome

(B)

- (C) Kinetochore of the chromosome
- 113. Which of the following is common to both ER and Golgi complex?
 - Both are double membrane bound (A) (B)
 - (C) Both contain their own DNA (D)
- Which of the following statement is incorrect w.r.t. lysosomes? 114.
 - (A) Lysosomes are simple tiny spherical sac-like structures
 - They are distributed in the cytoplasm of the cell (B)
 - (C) The enzymes of lysosomes work in basic condition
 - The enzymes of lysosomes are synthesised by RER (D)

- (D) Centromere of the chromosome
- - Both have cisternae

Carbohydrates

Both are semi-autonomous organelle

- **115.** In man and other mammals, air passes from outside into the lungs through.
 - (A) Nasal cavity, larynx, pharynx, trachea, bronchi, alveoli
 - (B) Nasal cavity, larynx, pharynx, trachea, bronchioles, alveoli
 - (C) Nasal cavity, pharynx, larynx, trachea, bronchioles, bronchi, alveoli
 - (D) Nasal cavity, pharynx, larynx, trachea, bronchi, bronchioles, alveoli
- **116.** The carbon dioxide is transported via blood to lungs.
 - (A) In combination with haemoglobin only
 - (B) Dissolved in blood plasma only
 - (C) In the form of carbonic acid only
 - (D) As carbamino haemoglobin and as bicarbonates
- **117.** In animal cells, cytokinesis takes place by

Cell plate formation

(A) Furrow formation

(B) Phragmoplast formation

TION

- (D) Both (A) and (B)
- **118.** The body cavity of cockroach is called :
 - (A) Pseudocoel
 - (B) Coelom

(C)

- (C) Hydrocoel
- (D) Haemocoel
- 119. How do parasympathetic neural signals affect the working of the heart?
 - (A) Reduce both heart rate and cardiac output
 - (B) Heart rate is increased without affecting the cardiac output
 - (C) Both heart rate and cardiac output increase
 - (D) Heart rate decreases but cardiac output increases
- **120.** Arteries are best defined as the vessels which:
 - (A) Carry blood from one visceral organ to another visceral organ
 - (B) Supply oxygenated blood to the different organs

- (C) Carry blood away from the heart to different organs
- (D) Break up into venoules which reunite to form a vein

	Ans	swer	Key [Samp	ole Pa	per :	NEE	T-XI	I] SE	T-1	
1	(A)	21	(C)	41	(A)	61	(C)	81	(D)	101	(C)
2	(B)	22	(D)	42	(D)	62	(D)	82	(B)	102	(D)
3	(D)	23	(C)	43	(A)	63	(C)	83	(D)	103	(B)
4	(D)	24	(C)	44	(C)	64	(A)	84	(A)	104	(A)
5	(A)	25	(A)	45	(A)	65	(B)	85	(C)	105	(C)
6	(A)	26	(B)	46	(D)	66	(C)	86	(C)	106	(B)
7	(A)	27	(C)	47	(A)	67	(C)	87	(A)	107	(D)
8	(D)	28	(B)	48	(C)	68	(A)	88	(D)	108	(A)
9	(A)	29	(A)	49	(C)	69	(B)	89	(A)	109	(D)
10	(A)	30	(B)	50	(A)	70	(B)	90	(B)	110	(C)
11	(B)	31	(C)	51	(A)	71	(D)	91	(D)	111	(B)
12	(A)	32	(D)	52	(C)	72	(C)	92	(B)	112	(C)
13	(D)	33	(C)	53	(C)	73	(B)	93	(D)	113	(B)
14	(B)	34	(D)	54	(B)	74	(A)	94	(B)	114	(C)
15	(D)	35	(C)	55	(D)	75	(C)	95	(A)	115	(D)
16	(B)	36	(B)	56	(B)	76	(B)	96	(D)	116	(D)
17	(A)	37	(B)	57	(B)	77	(D)	97	(A)	117	(A)
18	(C)	38	(B)	58	(B)	78	(D)	98	(A)	118	(D)
19	(D)	39	(D)	59	(C)	79	(B)	99	(A)	119	(A)
20	(B)	40	(D)	60	(B)	80	(A)	100	(B)	120	(C)