menilt
 NEET | IIT-JEE | FOUNDATION

ADMISSION TEST (NEET)

SAMPLE PAPER Set-1

COURSE : XII (One Year Medical)

PHYSICS

1. Two wooden blocks are moving on a smooth horizontal surface such that the mass m remains stationary with respect to the block of mass M as shown in figure. The magnitude of force P is:

(A) $\quad(M+m) g \tan \beta$
(B) $g \tan \beta$
(C) $\quad m g \cos \beta$
(D) $\quad(M+m) g \operatorname{cosec} \beta$
2. A toy car of mass 20 kg is moving at $10 \mathrm{~m} / \mathrm{s}^{2}$ and another toy truck of mass 10 kg is moving at $40 \mathrm{~m} / \mathrm{s}^{2}$ along a straight line. The acceleration of centre of mass of the two is
(A) $10 \mathrm{~m} / \mathrm{s}^{2}$
(B) $20 \mathrm{~m} / \mathrm{s}^{2}$
(C) $40 \mathrm{~m} / \mathrm{s}^{2}$
(D) zero
3. If the value of ' g ' acceleration due to gravity, at earth surface is $10 \mathrm{~m} / \mathrm{s}^{2}$, its value in $\mathrm{m} / \mathrm{s}^{2}$ at the centre of the earth, which is assumed to be a sphere of radius ' R ' metre and uniform mass density is:
(A) 5
(B) $10 / \mathrm{R}$
(C) $\quad 10 / 2 \mathrm{R}$
(D)
Zero
4. A block is initially at rest. The friction force acting on the block at time $t=4 \sec$ will be:

(A) 50 N
(B) 30 N
(C) $\quad 25 \mathrm{~N}$
(D) $\quad 40 \mathrm{~N}$
5. Assuming earth to be a sphere of a uniform density, what is the value of gravitational acceleration in a mine 100 km below the earth's surface? (Given $\mathrm{R}=6400 \mathrm{~km}$)
(A) $\quad 9.65 \mathrm{~m} / \mathrm{s}^{2}$
(B) $7.64 \mathrm{~m} / \mathrm{s}^{2}$
(C) $\quad 5.06 \mathrm{~m} / \mathrm{s}^{2}$
(D) $\quad 3.10 \mathrm{~m} / \mathrm{s}^{2}$
6. A spring of spring constant k is broken in the length of ratio $1: 3$. The spring constant of larger part will be:
(A) $\frac{4 \mathrm{k}}{3}$
(B) $\frac{2 \mathrm{k}}{3}$
(C) $\frac{\mathrm{k}}{3}$
(D) $\frac{5 \mathrm{k}}{3}$
7. A rocket of initial mass M_{0} starts from rest eject gases with exhaust velocity v_{0}. The mass of rocket when velocity of rocket is $2 \mathrm{v}_{0}$ is
(A) $\quad \mathrm{M}_{0} \mathrm{e}^{-2}$
(B) $\quad \mathrm{M}_{0} \mathrm{e}$
(C) $\quad \mathrm{M}_{0} \mathrm{e}^{2}$
(D) $\quad 2 \mathrm{M}_{0}$
8. A wire has a mass $(0.3 \pm 0.003) \mathrm{g}$, radius $(0.5 \pm 0.005) \mathrm{mm}$ and length $(6 \pm 0.06) \mathrm{cm}$. The maximum percentage error in the measurement of density is:
(A) 1
(B) 2
(C) 3
(D) 4
9. A body is released from the top of a tower of height H metre. After 2 seconds it is stopped and then instantaneously released. What will be its height after next 2 seconds?
(A) $(\mathrm{H}-5)$ metre
(B) $\quad(\mathrm{H}-10)$ metre
(C) $\quad(\mathrm{H}-20)$ metre
(D) $\quad(\mathrm{H}-40)$ metre
10. A metal ball falls from a height of 32 metre on a steel plate. If the coefficient of restitution is 0.5 , to what height will the ball rise after second bounce?
(A) 2 m
(B) 4 m
(C) 8 m
(D) 16 m
11. A ball of mass m_{1} makes a head on elastic collision with a ball of mass m_{2} which is initially at rest. The transfer of kinetic energy to the second ball is maximum when:
(A) $\quad m_{1} \gg m_{2}$
(B) $m_{1}=m_{2}$
(C) $m_{1} \ll m_{2}$
(D) $\quad m_{1} \leq m_{2}$
12. If θ be the angle between two vectors \vec{P} and \vec{Q}, then $\vec{P} \cdot(\vec{Q} \times \vec{P})$ is equal to
(A) zero
(B) $\mathrm{P}^{2} \mathrm{Q} \cos \theta$
(C) $\mathrm{PQ}^{2} \sin \theta$
(D) PQ^{2}
13. A sealed tank containing a liquid of density ρ moves with a horizontal acceleration a, as shown in the figure. The difference in pressure between the points A and B is:

(A) $\quad h \rho g$
(B) $L \rho a$
(C) $\quad h \rho \mathrm{~g}-\mathrm{L} \rho a$
(D) $\mathrm{h} \rho g+\mathrm{L} \rho a$
14. There are two identical small holes on the opposite sides of a tank containing a liquid. The tank is open at the top. The difference in height between the two holes is h. As the liquid comes out of the two holes, the tank will experience a net horizontal force proportional to:
(A) \sqrt{h}
(B) h
(C) $\quad h^{3 / 2}$
(D) $\quad h^{2}$

15. A particle of mass m with velocity v collides head on with another identical mass at rest elastically. The velocity of the first particle just after collision is
(A) 2 v
(B) $\quad \mathrm{v}$
(C) $\mathrm{v} / 2$
(D) Zero
16. A reference frame attached to the earth:
(A) is an inertial frame by definition
(B) cannot be an inertial frame because the earth is revolving round the sun
(C) is an inertial frame because Newton's law are applicable in this frame
(D) is an inertial frame because the earth is rotating about its own axis
17. A man pushes a wall and fails to displace it. Work done by him is:
(A) zero
(B) negative
(C) maximum
(D) positive, but not maximum
18. Centre of mass is a point:
(A) which is geometric centre of a body
(B) from which distance of particles are same
(C) where the whole mass of the body is supposed to concentrated
(D) which is the origin of reference frame
19. The angular momentum of a moving body remains constant if:
(A) net external force is applied
(B) net pressure is applied
(C) net external torque is applied
(D) net external torque is not applied
20. A gas flows with a velocity v along a pipe of cross-sectional area S and bent an angle of 90° at a point A. What force does the gas exert on the pipe at A if its density is ρ ?
(A) $\frac{\sqrt{2} \mathrm{~S} v}{\rho}$
(B) $\quad \sqrt{2} \mathrm{~S} v^{2} \rho$
(C) $\frac{\sqrt{3} S v^{2} \rho}{2}$
(D) $\sqrt{3} \mathrm{~S} v^{2} \rho$
21. Three forces acting on a body are shown in figure. To have the resultant force only along the y-direction, the magnitude of the minimum additional force 4 N needed is:
(A) $\frac{\sqrt{3}}{4} \mathrm{~N}$
(B) $\quad \sqrt{3} \mathrm{~N}$
(C) $\quad 0.5 \mathrm{~N}$
(D) $\quad 1.5 \mathrm{~N}$

22. A uniform metal disc of radius R is taken and out of it a disc of radius $R / 2$ is cut-off from the end. The centre of mass of the remaining part will be:
(A) $\mathrm{R} / 4$ from the centre
(B) $\quad \mathrm{R} / 3$ from the centre
(C) $\mathrm{R} / 5$ from the centre
(D) $\mathrm{R} / 6$ from the centre
23. A tank is filled with water of density $1 \mathrm{~g} / \mathrm{cm}^{3}$ and oil of density $0.9 \mathrm{~g} / \mathrm{cm}^{3}$. The height of water layer is 100 cm and of the oil layer is 400 cm . If $\mathrm{g}=980 \mathrm{~cm} / \mathrm{s}^{2}$, then the velocity of efflux from an opening in the bottom of the tank is:
(A) $\sqrt{900 \times 980} \mathrm{~cm} / \mathrm{s}$
(B) $\sqrt{100 \times 980} \mathrm{~cm} / \mathrm{s}$
(C) $\sqrt{920 \times 980} \mathrm{~cm} / \mathrm{s}$
(D) $\sqrt{950 \times 980} \mathrm{~cm} / \mathrm{s}$
24. A cylinder of height h is placed on an inclined plane, the angle of inclination of which is slowly increased. It begins to topple when the angle of inclination is 45°. What is the radius of the cylinder?
(A) $\quad h$
(B) $\frac{3}{4} h$
(C) $\frac{1}{2} h$
(D) $\frac{1}{4} h$
25. The radius and mass of earth are increased by 0.5%. Which of the following statements is not true at the surface of the earth?
(A) $\quad g$ will increase
(B) $\quad g$ will decrease
(C) Escape velocity will remain unchanged
(D) Potential energy will remain unchanged.
26. A particle of mass $4 m$ at rest explodes into three fragments. Two of the fragments each of mass m each move with speed v at right angles to each other. The kinetic energy released in the process is:
(A) $2 m v^{2}$
(B) $\frac{3}{2} m v^{2}$
(C) $\frac{1}{2} m v^{2}$
(D) $3 m v^{2}$
27. A bar of mass $m \&$ length l is in pure translatory motion with its centre of mass velocity v. It collides with and sticks to another identical bar at rest as shown in figure. Assuming that after collision it becomes one composite bar of length $2 l$, the angular velocity of the composite bar will be:
(A) $\frac{3 v}{4 l}$, clockwise
(B) $\frac{4 v}{3 l}$, ant-clockwise
(C) $\frac{3 v}{4 l}$, ant clockwise
(D) $\frac{4 v}{3 l}$, clockwise

28. An object of mass 3 kg is at rest. Now a force of $\overrightarrow{\mathrm{F}}=6 t^{2} \hat{i}+4 t \hat{j}$ is applied on the object then velocity of object at $\mathrm{t}=3 \mathrm{sec}$. is:
(A) $18 \hat{i}+3 \hat{j}$
(B) $18 \hat{i}+6 \hat{j}$
(C) $3 \hat{i}+18 \hat{j}$
(D) $18 \hat{i}+4 \hat{j}$
29. A heavy uniform chain lies on a horizontal table top. If the coefficient of friction between the chain and the table surface is 0.25 , then the maximum percentage of the length of the chain that can hang off the edge of the table is:
(A) 20%
(B) 25%
(C) 35%
(D) 45%
30. A rod of length ' 2 m ' and mass 0.5 kg is pivoted at one end as shown in figure. The increase in potential energy when $\theta=60^{\circ}$ is $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

(A) 1.25 J
(B) $\quad 2.5 \mathrm{~J}$
(C) 5 J
(D) 10 J

CHEMISTRY

31. Total number of protons in $10 \mathrm{~g} \mathrm{CaCO}_{3}$ are
(A) 4.011×10^{24}
(B) 1.0478×10^{24}
(C)
3.0115×10^{24}
(D) 7×10^{24}
32. The total number of spectral lines emitted during the transition of an electron from $5^{\text {th }}$ shell to $2^{\text {nd }}$ shell are
(A) 11
(B) 12
(C) 8
(D) 6
33. Maximum covalency of N and B respectively are
(A) 5, 3
(B) 3,1
(C) 3,3
(D) 4,4
34. If a system absorbs 1 kJ heat at constant pressure of 1 atm , the system volume changes from 3 litres to 10 litres. The change in internal energy will be
(A) 993 kJ
(B) 4 kJ
(C) $\quad-6 \mathrm{~kJ}$
(D) $\quad 0.29 \mathrm{~kJ}$
35. The pH of a buffer containing 2 M acetic acid and 1 M sodium acetate will be:
$\left(\mathrm{K}_{\mathrm{a}}\right.$ for $\left.\mathrm{CH}_{3} \mathrm{COOH}=1.8 \times 10^{-5}\right)$
(A) 3.74
(B) 5.04
(C) 4.74
(D) 5.26
36. The total number of angular nodes in the $3 p$ orbitals are
(A) 0
(B) 1
(C) 2
(D) 3
37. The outer most electronic configuration of an element is [Ar] $3 \mathrm{~d}^{7} 4 \mathrm{~s}^{2}$. The atomic number of an element lying just below this element in its group will be
(A) 40
(B) 45
(C) 49
(D) 54
38. The hybridization of Xe in $\mathrm{XeO}_{2} \mathrm{~F}_{2}$ is:
(A) sp^{3}
(B) $\mathrm{sp}^{3} \mathrm{~d}$
(C) $\mathrm{sp}^{3} \mathrm{~d}^{3}$
(D) $\quad \mathrm{sp}^{3} \mathrm{~d}^{2}$
39. Which of the following is diamagnetic?
(A) O_{2}
(B) O_{2}^{+}
(C) O_{2}^{-}
(D) $\quad \mathrm{O}_{2}{ }^{2-}$
40. Which of the following are isoelectric species?
(A) $\mathrm{BH}_{4}^{-}, \mathrm{CH}_{4}$ and NH_{4}^{+}
(B) $\quad \mathrm{CO}_{3}^{2-}, \mathrm{NO}_{3}^{-}$and BO_{3}^{-}
(C) $\mathrm{CO}_{2}, \mathrm{~N}_{3}^{-}$and NO_{2}^{+}
(D) All of these
41. The correct order of increasing covalent character is
(A) $\mathrm{AlF}_{3}<\mathrm{AlCl}_{3}<\mathrm{AlBr}_{3}<\mathrm{AlI}_{3}$
(B) $\quad \mathrm{AlF}_{3}>\mathrm{AlBr}_{3}<\mathrm{AlCl}_{3}<\mathrm{AlI}_{3}$
(C) $\mathrm{AlF}_{3}<\mathrm{AlBr}_{3}<\mathrm{AlI}_{3}<\mathrm{AlCl}_{3}$
(D) $\quad \mathrm{AlI}_{3}<\mathrm{AlBr}_{3}<\mathrm{AlCl}_{3}<\mathrm{AlF}_{3}$
42. A sudden large jump between the values of second and third ionization energies of an element would be associated with which of the following electronic configuration?
(A) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$
(B) $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{1}$
(C) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
(D) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$
43. When enthalpy and entropy change for a chemical reaction are $-2.5 \times 10^{5} \mathrm{cal}$ and $7.4 \mathrm{cal}^{\mathrm{deg}}{ }^{-1}$ respectively, the reaction at 298 K would be
(A) Spontaneous
(B) Reversible
(C) Irreversible
(D) Non-spontaneous
44. The pH of a solution of HCl is 4 . The molarity of the solution is
(A) 4.0
(B) 0.4
(C) 0.0001
(D) 0.04
45. In $\mathrm{C}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CO}+\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{O}$ acts as
(A) Oxidizing agent
(B) Reducing agent
(C) Both
(D) None of these
46. Which hydrogen like species will have same radius as that of first Bohr's orbit of hydrogen atom?
(A) $\mathrm{n}=2, \mathrm{H}$
(B) $\mathrm{n}=2, \mathrm{He}^{+}$
(C) $\mathrm{n}=2, \mathrm{Li}^{++}$
(D) $\mathrm{n}=2, \mathrm{Be}^{3+}$
47. Which has maximum number of atoms?
(A) 4 gm of H_{2}
(B) 32 gm of O_{2}
(C) $\quad 44 \mathrm{gm}$ of CO_{2}
(D) 64 gm of SO_{2}
48. For the reversible reactions:

then K_{3} of the reaction:

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \text {is: }
$$

(A) $\mathrm{K}_{3}=\mathrm{K}_{1} \cdot \mathrm{~K}_{2}$
(B) $\mathrm{K}_{3}=\frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}$
(C) $\quad \mathrm{K}_{3}=\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}$
(D) $\quad \mathrm{K}_{3}=\frac{1}{\mathrm{~K}_{1} \mathrm{~K}_{2}}$
49. Central atom of the following compound has one lone pair of electrons and three bond pairs of electrons
(A) $\mathrm{H}_{2} \mathrm{~S}$
(B) AlCl_{3}
(C) $\quad \mathrm{NH}_{3}$
(D) $\quad \mathrm{BF}_{3}$
50. The hydrogen ion concentration of 0.1 N solution of $\mathrm{CH}_{3} \mathrm{COOH}$, which is 30% dissociated is
(A) 0.03
(B) 3.0
(C) 0.3
(D) 30.0
51. When a liquid boils, there is
(A) an increase in entropy
(B) a decrease in entropy
(C) an increase in heat of vaporization
(D) an increase in free energy
52. K_{C} for the reaction $\mathrm{A}(\mathrm{g})+\mathrm{B}(\mathrm{g}) \rightleftharpoons \mathrm{C}(\mathrm{g})$ is 3.0 at 400 K . In an experiment x mol of A is mixed with same number of moles of B in a 1 litre vessel. At equilibrium 3 mol of C is formed. The value of x will be
(A) 2.5
(B) 3.5
(C) 4.0
(D) 4.5
53. The solubility of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ is S . The $\mathrm{K}_{\text {sp }}$ for the salt is given by
(A) 2 S
(B) S^{2}
(C) $4 S^{3}$
(D) $\quad 2 S^{2}$
54. Which combination of the compounds and their geometry is not correct?
(A) HgCl_{2}-linear
(B) $\quad \mathrm{ClF}_{3}-\mathrm{V}$-shaped
(C) BrF_{3}-T-shaped
(D) $\quad \mathrm{ICl}_{4}^{-}$-square planar
55. Which is not an intensive property?
(A) boiling point
(B) refractive index
(C) molarity
(D) volume
56. Which is not amphoteric?
(A) HSO_{4}^{-}
(B) $\mathrm{H}_{2} \mathrm{PO}_{2}^{-}$
(C) $\mathrm{H}_{2} \mathrm{O}$
(D) NH_{3}
57. The first ionization potential of $\mathrm{Mg}, \mathrm{Al}, \mathrm{P}$ and S follows the order
(A) $\mathrm{Mg}<\mathrm{Al}<\mathrm{P}<\mathrm{S}$
(B) $\mathrm{Al}<\mathrm{Mg}<\mathrm{P}<\mathrm{S}$
(C) $\mathrm{Al}<\mathrm{Mg}<\mathrm{S}<\mathrm{P}$
(D) $\mathrm{Mg}<\mathrm{Al}<\mathrm{S}<\mathrm{P}$
58.
 is not the ground state electronic configuration of nitrogen because it violates
(A) Aufbau principle
(B) Hund's rule
(C) Pauli's principle
(D) Uncertainty principle
59. In which of the following energy is absorbed?
(A) $\mathrm{F}-\mathrm{F}^{-}$
(B) $\mathrm{Cl} \rightarrow \mathrm{Cl}^{-}$
(C) $\quad \mathrm{O}^{-} \rightarrow \mathrm{O}^{2-}$
(D) $\mathrm{H} \rightarrow \mathrm{H}^{-}$
60. The pH of 0.1 M solution of the following salts increases in the order
(A) $\mathrm{NaCl}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCN}<\mathrm{HCl}$
(B) $\mathrm{HCl}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCl}<\mathrm{NaCN}$
(C) $\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCl}<\mathrm{HCl}$
(D) $\mathrm{HCl}<\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCl}$

BIOLOGY

61. Find out the correct sequence of taxonomic categories in ascending order:
(A) Species \rightarrow Family \rightarrow Genus
(B) Kingdom \rightarrow Class \rightarrow Division
(C) Order \rightarrow Class \rightarrow Division
(D) Genus \rightarrow Class \rightarrow Order
62. Animals are classified into hierarchical group. In which one of the following, the largest number of species are found?
(A) Genus
(B) Order
(C) Family
(D) Class
63. Ergot disease of rye is caused by a species of:
(A) Rhizopus
(B) Ustilago
(C) Claviceps
(D) Phytopthora
64. Which one of the following is a slime mould?
(A) Physarum
(B) Thiobacillus
(C) Anabaena
(D) Rhizopus
65. Which one of the following statements about mycoplasma is wrong?
(A) They are pleomorphic
(B) They are sensitive to penicillin
(C) They cause diseases in plants
(D) They are also called PPLO
66. Which of the following is not a group of green algae?
(A) Chlamydomonas, Volvox
(B) Ulothrix, Spirogyra
(C) Gelidium, Chara
(D) Chlamydomonas and Chara
67. In Pteris, the roots are:
(A) Tap roots
(B) Coralloid roots
(C) Adventitious roots
(D) Rhizoids
68. Walking ferns belongs to the genus:
(A) Adiantum
(B) Dryopteris
(C) Pteris
(D) Marsilea
69. The roots in gymnosperms are generally \qquad and in Cycas small specialised roots called \qquad are associated with N_{2} fixing cyanobacteria.
(A) Adventitious, coralloid roots
(B) Tap, coralloid roots
(C) Adventitious, mycorrhizal roots
(D) Tap, haustorial roots
70. Biennials are the plants which:
(A) Complete their life cycle in one growing season only
(B) Remain vegetative in first growing season and produce flowers in the next season
(C) Produce flowers twice during that life cycle
(D) Produce flowers many times during their life time
71. When the placenta is axial and the ovules are attached to it in a multilocular ovary, the placentaion is said to be axile, as in:
(A) China rose
(B) Tomato
(C) Lemon
(D) All of these
72. Whorled phyllotaxy of leaves is characteristics of:
(A) Hibiscus
(B) Brassica
(C) Alstonia
(D) Calotropis
73. Ground tissue of leaf is:
(A) Collenchymatous
(B) Parenchymatous
(C) Called cortex
(D) Always differentiated
74. On studying the T.S. of an organ a student found xylem and phloem are arranged in an alternate manner on different radii. This organ will be:
(A) Dicot root
(B) Dicot leaf
(C) Monocot stem
(D) Dicot stem
75. Why Calvin cycle is called C3-cycle?
(A) Primary CO_{2} acceptor is C 3 compound
(B) Many intermediate compounds are C3 compound
(C) 1st stable product is 3 PGA which is a C3 compound
(D) None of the above
76. In stroma,
(A) enzymatic reactions incorporate CO_{2} into the plant leading to ATP and NADH_{2} formation
(B) enzymatic reactions incorporate CO_{2} into plant leading to the synthesis of sugar, which in turn, forms starch
(C) light energy is captured to form glucose
(D) ATP and NADPH_{2} are splitted and $\mathrm{H} \mathrm{O}_{2}$ and O_{2} comes out
77. Bundle sheath cells of C 4 -plants are rich in which enzyme?
(A) PEP carboxylase
(B) Malate dehydrogenase
(B) Phosphofructokinase
(D) RuBisCO
78. Specialised cells called heterocysts are present in
(A) dinoflagellates
(B) chrysophytes
(C) archaebacterial
(D) cyanobacteria
79. Methanogens belong to
(A) eubacteria
(B) archaebacteria
(C) dinoflagellates
(D) slime moulds
80. In fungi, the various types of spores are produced in distinct structures known as
(A) fruiting body
(B) spore sac
(C) peristome
(D) pollen sac
81. For naming different families in taxonomy.
(A) Animal families ends with suffix - idea
(B) Plant families ends with suffix - aceae
(C) Both vegetative and reproductive features are taken as the basis of plant classification
(D) All of the above
82. Species is considered as
(A) The largest taxon of taxonomy/classification
(B) The smallest taxon of taxonomy/classification
(C) Both smallest and the largest unit of taxonomy/classification
(D) None of the above
83. PS-I is located on the
(A) non-appressed part of grana thylakoids
(B) stroma thylakoids
(C) appressed part of grana thylakoids
(D) Both (A) and (B)
84. Emerson's enhancement effect and red drop have been instrumental in the discovery of
(A) two photosystems operating simultaneously
(B) photophosphorylation and cyclic electron transport
(C) photophosphorylation
(D) photophosphorylation and non-cyclic electron transport
85. The most obvious and technically complicated feature of all living organisms is:
(A) Reproduction
(B) Growth
(C) Ability to sense their environment
(D) Photosynthesis
86. In bacteria pili and fimbriae are surface structures and they:
(A) play a role in motility.
(B) play a role in sexuality.
(C) help attach the bacteria to rocks in streams
(D) all of these
87. In Z-scheme of light reaction, the participating pigment systems is/are
(A) PS-I and PS-II
(B) PS-III
(C) Carotenoid and xanthophyll
(D) PS-II
88. Which of these may not be an economic importance of bryophytes?
(A) Food for animals like birds
(B) Peat formation used as fuel
(C) In older times, Sphagnum was used in place of absorbant cotton
(D) Mosses along with lichens are the first organisms to colonise rocks
89. In maize, the fibrous roots develop from:
(A) Lower nodes
(B) Upper nodes
(C) Upper internodes
(D) None of the above
90. Light compensation point is the point where
(A) gaseous exchange occurs in photosynthesis
(B) gaseous exchange does not occur in photosynthesis
(C) gaseous exchange reduces in photosynthesis
(D) light intensity become appropriate for photosynthesis
91. (A) Genetic material is basically naked, not surrounded by nuclear membrane
(B) Mesosome is present

Above features are true for
(A) Plants
(B) Animals
(C) Fungi
(D) Bacteria
92. Nucleolus is the site for \qquad
(A) tRNA synthesis
(B) rRNA synthesis
(C) Aerobic respiration
(D) Carbohydrate synthesis
93. Enzymes which catalyse joining of C-S bond falls
(A) Transferases
(B) Lyases
(C) Hydrolases
(D) Ligases
94. What is the innermost portion of mature plant cell walls called?
(A) Primary cell wall
(B) Secondary cell wall
(C) Middle lamella
(D) Tonoplast
95. The chemical substance most abundantly present in the middle lamella is:
(A) Calcium pectate
(B) Suberin
(C) Lignin
(D) Calcium phosphate
96. Mitosis differs from meiosis in:
(A) Forming four haploid cells
(B) Pairing of homologous chromosomes
(C) Doubling of each chromosome and each pair showing four chromatids
(D) Duplication of chromosomes and subsequent separation of chromatids
97. Which of these is a non-reducing sugar?
(A) Sucrose
(B) Glucose
(C) Fructose
(D) Maltose
98. Why are amino acids also called α-amino acids?
(A) They have α-carbon with amino \& acid group.
(B) They are rotated clockwise.
(C) They are rotated anti-clockwise.
(D) They rotate the plane of polarized light to the right.
99. Metamerism is absent in:
(A) Platyhelminthes (B)
Annelida
(C) Arthropoda
(D) Chordata
100. Which of the following combination of phylum and its characteristic is incorrect?
(A) Young Echinodermata - Bilateria
(B) Porifera - Gastrovascular cavity
(C) Platyhelminthes - Flatworms
(D) Nematoda - Roundworms, pseudocoelomate
101. Which of the following relationship was studied by Chargaff within any double stranded DNA molecule?
(A) $\mathrm{T}=\mathrm{C}, \mathrm{A}=\mathrm{G}$
(B) $\mathrm{A}=\mathrm{C}, \mathrm{C}=\mathrm{T}$
(C) $\mathrm{A}+\mathrm{T}=\mathrm{C}+\mathrm{G}$
(D) $\mathrm{A}+\mathrm{G}=\mathrm{T}+\mathrm{C}$
102. Centromere splits and chromatids separate in
(A) Metaphase I
(B) Anaphase I
(C) Metaphase II
(D) Anaphase II
103. Which are the three main layers that form the diffusion membrane?
(A) Thin squamous epithelium of alveoli, basement membrane of bronchioles and basement substance
(B) Thin squamous epithelium of alveoli, endothelium of alveolar capillaries and the basement substance
(C) Basement substance, cuboidal epithelium of alveoli and stratified epithelium of bronchiole
(D) Ciliated epithelium of trachea, endothelium of capillaries and basement substance
104. Pneumotaxic centre can moderate the functions of respiratory rhythm centre by:
(A) Reducing the duration of inspiration
(B) Increasing the duration of inspiration only
(C) First increasing and then reducing the duration of expiration
(D) Increasing the duration of expiration only
105. An Rh negative mother is pregnant for the first time with an Rh positive fetus. Just prior to birth some fetal blood cells cross the placenta into the mother. Which of the following will occur?
(A) The fetus will die before birth
(B) The mother will become Rh positive
(C) The mother will produce Rh antibodies
(D) The fetal red blood cells will become Rh negative
106. Which of the following best describes a artery?
(A) Thin-walled, elastic, and equipped with valves
(B) Thick-walled, elastic, and high pressure flow
(C) Thin-walled, muscular, and supplied with nerves
(D) Thick-walled, muscular, and low pressure flow
107. How many molecules of oxygen are carried by one molecule of haemoglobin.
(A) 6
(B) 8
(C) 2
(D) 4
108. About 97% of O_{2} is transported by RBC . The remaining 3% is
(A) dissolved in plasma and transported
(B) remains in lungs
(C) attached to cell membranes
(D) inside the mitochondria
109. Select the taxon mentioned that represents both marine and fresh water species:
(A) Echinoderms
(B) Ctenophora
(C) Cephalochordata
(D) Cnidaria
110. The essential chemical components of many coenzymes are:
(A) Nucleic acids
(B) Carbohydrates
(C) Vitamins
(D) Proteins
111. Transition state structure of the substrate formed during an enzymatic reaction is:
(A) Permanent but unstable
(B) Transient and unstable
(C) Permanent and stable
(D) Transient but stable
112. Spindle fibres attach on to:
(A) Kinetosome of the chromosome
(B) Telomere of the chromosome
(C) Kinetochore of the chromosome
(D) Centromere of the chromosome
113. Which of the following is common to both ER and Golgi complex?
(A) Both are double membrane bound
(B) Both have cisternae
(C) Both contain their own DNA
(D) Both are semi-autonomous organelle
114. Which of the following statement is incorrect w.r.t. lysosomes?
(A) Lysosomes are simple tiny spherical sac-like structures
(B) They are distributed in the cytoplasm of the cell
(C) The enzymes of lysosomes work in basic condition
(D) The enzymes of lysosomes are synthesised by RER
115. In man and other mammals, air passes from outside into the lungs through.
(A) Nasal cavity, larynx, pharynx, trachea, bronchi, alveoli
(B) Nasal cavity, larynx, pharynx, trachea, bronchioles, alveoli
(C) Nasal cavity, pharynx, larynx, trachea, bronchioles, bronchi, alveoli
(D) Nasal cavity, pharynx, larynx, trachea, bronchi, bronchioles, alveoli
116. The carbon dioxide is transported via blood to lungs.
(A) In combination with haemoglobin only
(B) Dissolved in blood plasma only
(C) In the form of carbonic acid only
(D) As carbamino - haemoglobin and as bicarbonates
117. In animal cells, cytokinesis takes place by
(A) Furrow formation
(B) Phragmoplast formation
(C) Cell plate formation
(D) Both (A) and (B)
118. The body cavity of cockroach is called :
(A) Pseudocoel
(B) Coelom
(C) Hydrocoel
(D) Haemocoel
119. How do parasympathetic neural signals affect the working of the heart?
(A) Reduce both heart rate and cardiac output
(B) Heart rate is increased without affecting the cardiac output
(C) Both heart rate and cardiac output increase
(D) Heart rate decreases but cardiac output increases
120. Arteries are best defined as the vessels which:
(A) Carry blood from one visceral organ to another visceral organ
(B) Supply oxygenated blood to the different organs
(C) Carry blood away from the heart to different organs
(D) Break up into venoules which reunite to form a vein

Answer Key [Sample Paper : NEET-XII] SET-1

1	(A)	21	(C)	41	(A)	61	(C)	81	(D)	101	(C)
2	(B)	22	(D)	42	(D)	62	(D)	82	(B)	102	(D)
3	(D)	23	(C)	43	(A)	63	(C)	83	(D)	103	(B)
4	(D)	24	(C)	44	(C)	64	(A)	84	(A)	104	(A)
5	(A)	25	(A)	45	(A)	65	(B)	85	(C)	105	(C)
6	(A)	26	(B)	46	(D)	66	(C)	86	(C)	106	(B)
7	(A)	27	(C)	47	(A)	67	(C)	87	(A)	107	(D)
8	(D)	28	(B)	48	(C)	68	(A)	88	(D)	108	(A)
9	(A)	29	(A)	49	(C)	69	(B)	89	(A)	109	(D)
10	(A)	30	(B)	50	(A)	70	(B)	90	(B)	110	(C)
11	(B)	31	(C)	51	(A)	71	(D)	91	(D)	111	(B)
12	(A)	32	(D)	52	(C)	72	(C)	92	(B)	112	(C)
13	(D)	33	(C)	53	(C)	73	(B)	93	(D)	113	(B)
14	(B)	34	(D)	54	(B)	74	(A)	94	(B)	114	(C)
15	(D)	35	(C)	55	(D)	75	(C)	95	(A)	115	(D)
16	(B)	36	(B)	56	(B)	76	(B)	96	(D)	116	(D)
17	(A)	37	(B)	57	(B)	77	(D)	97	(A)	117	(A)
18	(C)	38	(B)	58	(B)	78	(D)	98	(A)	118	(D)
19	(D)	39	(D)	59	(C)	79	(B)	99	(A)	119	(A)
20	(B)	40	(D)	60	(B)	80	(A)	100	(B)	120	(C)

