Topic: Triangles

Triangle:

A three-sided closed figure is called triangle.

Similarity:

Two figures are said to be similar if they have the same shape. Any two circles, squares, rhombuses are always similar

Congruency:

Two figures are said to be congruent if they have same shape and same size. Any two circles of same radius, two squares of same side, two rhombuses of same side are congruent.

Similarity in Triangles:

Two triangles are said to be similar if:
a) their all the three corresponding pairs of sides are equal.
b) their corresponding angles are equal.
c) the ratio of their corresponding sides is same.
d) Any two angles of one triangle are equal to the corresponding angles of another triangle.

Objectives

Q.1. Two triangles are said to be similar if:
a) only one corresponding angle is equal
b) Two corresponding sides are equal
c) Two corresponding angles are equal
d) None of these
Q.2. A diagonal in a square divide it into two triangles:
a) Similar
b) Congruent
c) Similar as well as congruent
d) None of these
Q.3. The diagonals of a square divide it into Similar triangles.
a) Two
b) Three
c) One
d) Four
Q.4. The perpendicular bisector in an isosceles right-angled triangle divides it into.............
a) Two obtuse angled triangles
b) Two isosceles right-angled triangles but not similar
c) Two isosceles right-angled triangles which are not similar
d) Two isosceles right-angled congruent triangles
Q.5. Which one of the following is not true?
a) Two circles are always similar
b) Two squares area always similar
c) Two rectangles are always similar
d) Two right-angled isosceles triangles are always similar.
Q.6. Two squares are always
(Similar/Congruent)
Q.7. Two circles are always \qquad
(Similar/Congruent)
Q.8. If $\triangle \mathrm{ABC} \simeq \triangle \mathrm{DEF}$ and $\triangle \mathrm{DEF} \simeq \triangle \mathrm{GH}$, then $\triangle \mathrm{ABC}$ and $\Delta \mathrm{GHI}$ are also similar triangles. (True/False)
Q.9. If two squares are similar, then their sides are always equal.
Q.10. If the radii of two circles are 5 cm and 7 cm respectively. The circles are similar.
(true/false)
Q.11. The median in an equilateral triangle divides it into two triangles which are

Similar but not right-angled/ Similar and right-angled
Q.12. The areas of two similar triangles are in the ratio 4:9, then the ratio of their any two corresponding sides is:
a) $4: 9$
b) $2: 3$
c) $16: 81$
d) $1: 2$
Q.13. The area of two similar triangles is $100 \mathrm{~cm}^{2}$ and $200 \mathrm{~cm}^{2}$. If one side of triangle having area $100 \mathrm{~cm}^{2}$ is 10 cm , then the corresponding side in second triangle is:
a) 10 cm
b) 15 cm
c) 20 cm
d) Cannot be found
Q.14. Two triangles of equal area will always be similar. (true/False)
Q. 15 Two triangles of equal area will always be congruent.
(true/false)
Q.16. Two similar triangles are always equal in area. (true/false)
Q.17. Two congruent triangles are always equal in area. (true/false)
Q.18. Two rectangles having one corresponding side same are always similar. (True/False)
Q.19. Two right-angled triangles are always similar. (true/False)
Q.20. If the ratio of corresponding sides of two triangles is equal, then the triangles are \qquad
(Similar/Congruent)
Q.21. Sides of $\triangle A B C$ are $3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 5 cm . Sides of $\triangle P Q R$ are $6 \mathrm{~cm}, 8 \mathrm{~cm}$ and 10 cm . Then $\triangle A B C$ and $\triangle P Q R$ are:
(Similar/Congruent)

Very Short Answer Type Questions

Q.1. Draw a triangle $A B C$ and draw another line segment DE || BC
Q.2. The ratio of the areas of two similar triangles (complete the statement of the theorem)
Q.3. Find the hypotonus of a right-angled triangle which has other two sides are 3 cm and 4 cm .
Q.4. Draw a triangle PQR in which ST is a line segment joining the mid points of the sides $P Q$ and $P R$. Observe of the line segment $S T$ is parallel to $Q R$
Q.5. If the ratio of the areas of two similar triangles is 4:9, show that the ratio of their any two corresponding pairs of sides is 2:3.
Q.6. Take a rectangular paper. Fold it along any of the diagonal. Check if the folded parts superimpose each other.
Q.7. Draw a rhombus and its two diagonals. Observe if the diagonals are perpendicular to each other.
Q.8. Give the names of any three pairs of objects available in your home which are similar but not congruent.
Q.9. Give the names of any three pairs of objects available in your home which are similar as well as congruent.
Q.10. Give the names of any three pairs of objects available in your home which are neither similar nor congruent.
Q.11. categorise the given objects as similar or congruent or else:
(a) A pair of spoons of same size and same shape
(b) A pair of papers from the same book
(c) A pair of shoes
(d) A pair of cylindrical mugs of different size
Q.12. Draw two triangles which are similar but not congruent.
Q.13. Draw two circles which are congruent as well as similar
Q.14. Draw two circles which similar but not congruent.
Q.15. Are all rhombuses similar? If so, draw a pair of rhombuses which are congruent as well similar.

Short Answer Type Questions

Q.1. In the given figure, $D E \| B C, A D=2$, $B D=2.5$ and $A E=3$, find $E C$

Q.2. If $P Q=4 \mathrm{~cm}, P T=6 \mathrm{~cm}, Q S=4 \mathrm{~cm}$ and $T R=6 \mathrm{~cm}$, Prove that $S T \| Q R$

Q.3. $\quad \triangle \mathrm{ABC}$ is isosceles with $A D=$ $5 \mathrm{~cm}, B D=4 \mathrm{~cm}$. Find AE and EC when $D E$ || $B C$

Q.4. Prove that the line segment from the common vertex of equal sides of a triangle divides the triangle into congruent triangles.
Q.5. $\quad \ln \triangle P Q R, S T \| Q R, P T=T Q=3 \mathrm{~cm}$, $P S=6 \mathrm{~cm}$, Find T.

Q.6. In the given figure, if $\mathrm{PT}=\mathrm{TQ}=4 \mathrm{~cm}$, $P S=S R=8 \mathrm{~cm}$, prove that $T S \| Q R$

Q.7. The angles of $\triangle A B C, \angle A=60, \angle B=90$ and $\angle C=30$. In $\triangle \mathrm{PQR}, \angle \mathrm{P}=30^{\circ}, \angle \mathrm{Q}=90^{\circ}, \angle \mathrm{R}=30^{\circ}$. Show that: $\frac{A C}{R P}=\frac{B C}{P Q}=$ $\frac{A B}{R Q}$
Q.8. In the given figure, if $A B \| C D$, prove that $\triangle A B O \simeq \triangle D O C$

Q.9. In the figure given in 0.8 , if $\angle B=\angle C$, prove that $\triangle A B O \simeq$ $\triangle D O C$
Q.10. Prove that the median in an isosceles triangle divide it into two similar triangles.
Q.11. If perpendicular in a triangle bisects the side of the triangle, prove that the triangle is isosceles.
Q.12. In the given figure, $\triangle \mathrm{ABC} \simeq$ $\triangle D E F$. If ar $\triangle A B C=81 \mathrm{~cm}^{2}$ and $\operatorname{ar} \triangle D E F=256 \mathrm{~cm}^{2}$. Find $D E$ when $A B=9 \mathrm{~cm}$

Q.13. $\triangle X Y Z$ and $\triangle P Q R$ are two equilateral triangles. If $\operatorname{ar} \triangle X Y Z=4 \sqrt{3} \mathrm{~cm}^{2}$ and side of the $\triangle P Q R$ is 6 cm ,
 find the side of $\triangle X Y Z$ and $\operatorname{ar} \triangle P Q R$
Q.14. In the given triangle $A B \| Q R$. If $\operatorname{ar} \triangle P A B=\operatorname{ar}(A B R Q)$ and $A P=5 \mathrm{~cm}$, find $A Q$

Q.15. The hypotonus and one of the other two sides of a right-angled triangle are 15 cm and 9 cm , find the third side.
Q.16. $\triangle A B C$ is right-angled at $\angle B$. If $D E \|$ $B C$, prove that:
$D E^{2}+A E^{2}=B C^{2}+A C^{2}$

Q.17. Two trees (A) and (B) are of height 21 m and 12 m respectively. Shows that: $\frac{\text { Shadow of tree }(A)}{\text { Shadow of tree }(B)}=\frac{7}{4}$
Q.18. If the areas of two similar right-angled triangles are $81 \mathrm{~cm}^{2}$ and $225 \mathrm{~cm}^{2}$, show that ratio of their hypotonus is $3: 5$

Long Answer Type Questions

Q.1. $A B C D$ is a rectangle. If $E F \| D C$, prove that $\mathrm{EO}=\mathrm{OF}$ and $\mathrm{DO}=\mathrm{OB}$

Q.2. Prove that the diagonal of a parallelogram divides it into two triangles which are similar as well congruent.
Q.3. Prove that a square is divided into congruent as well similar triangles by any of the diagonal.
Q.4. $\quad A B C D$ is a rectangle. $A C$ and $B D$ are the diagonals which intersect each other at point O. Prove that:

1) $\triangle \mathrm{AOB} \simeq \triangle \mathrm{DOC}$

II) $\triangle A O D \simeq \triangle B O C$
Q.5. In the given figure, $D E \| B C$, find $\angle A D E, \angle A E D$ and $\angle A$ if $\angle B=60$ and $\angle C=65$

Q.6. The area of $\triangle X Y Z=$ $25 \mathrm{~cm}^{2}$ and $\triangle P Q R=$ $36 \mathrm{~cm}^{2}$. If $X Y=5 \mathrm{~cm}$,
 $Y Z=10 \mathrm{~cm}$ and $X Z=2.5 \mathrm{~cm}$, find $P Q, Q R$ and $P R$
Q.7.
$\triangle A B C \sim \triangle D E F, \triangle A B C$ and $\triangle D E F$ are right angled triangles right angled at $\angle \mathrm{C}$ and $\angle \mathrm{F}$ respectively. If
 $\operatorname{ar} \triangle A B C=\operatorname{ar} \triangle D E F$ and $B C=$ $3 \mathrm{~cm}, \mathrm{AC}=4 \mathrm{~cm}$, find $\mathrm{EF}, \mathrm{DF}, \mathrm{DE}$
Q.8. If the area of two similar triangles is equal, prove that they are congruent.
Q.9.
A, B, C are the mid points of the sides $P Q, Q R$ and $P R$ of $\triangle P Q R$ respectively. Prove the $\operatorname{ar} \triangle A B C=$
 $\frac{1}{4} \operatorname{ar} \Delta P Q R$
Q.10. Which one of the following triplets as the sides of triangle represent it as right-angled triangle?
(a) $5 \mathrm{~cm}, 6 \mathrm{~cm}, 7 \mathrm{~cm}$
(b) $6 \mathrm{~cm}, 8 \mathrm{~cm}, 10 \mathrm{~cm}$
Q.11. $\triangle A B C$ is right-angled at $\angle A$. If $A D \perp B C$, prove that
$A D^{2}=B D . D C$

Q.12. In the given figure, $\triangle A B C$ is right-angled at $\angle A$. If $A D \perp B C$, if $B D=D C$, prove that
$A D=D C$

Q.13. A 10 m ladder is placed 6 m away from the foot of a tree. If the top of the ladder touches at the one-third of the height of the tree. Find the height of the tree.
Q.14. $\triangle P Q R$ and $\triangle X Y Z$ are two right-angled similar triangles at $\angle \mathrm{Q}$ and $\angle Y$ respectively. If the ratio of the areas of $\triangle P Q R$ to
 $\triangle X Y Z$ is $\frac{1}{2^{\prime}}$ Prove that $2 P R . R Q=X Z . Y Z$
Q.15. A 20 m high tree makes 15 m shadow on the ground at a particular time. If another tree makes 12 m shadow on the ground at the same time, find the height of the tree.

Answers

Objective:

Q1	(c)
Q2	(c)
Q3	(d)
Q4	(d)
Q5	(c)
Q6	Similar
Q7	Similar
Q8	True
Q9	false
Q10	True
Q11	Similar and right-angled
Q12	(b)
Q13	(c)
Q14	false
Q15	False
Q16	False
Q17	True
Q18	False
Q19	False
Q20	Similar
Q21	Similar

Very Short Answer Type

Q3
5 cm

Q4
Q6
Q7
Q11

Q15
Yes

Short Answer Type

Q1
$\mathrm{EC}=3.7 \mathrm{~cm}$
Q3
$A E=5 \mathrm{~cm}$, $\mathrm{EC}=4 \mathrm{~cm}$

Q5
$T R=6 \mathrm{~cm}$
Q12
$D E=14 \mathrm{~cm}$
Q13
4 cm and $9 \sqrt{3} \mathrm{~cm}^{2}$
Q14
$\mathrm{AQ}=5(\sqrt{2}-1) \mathrm{cm}$
Q15
12 cm

Long Answer Type

Q5
$\angle A E D=60$
$\angle A F E=65$
$\angle A=55$
$P Q=6 \mathrm{~cm}, \mathrm{QR}=12 \mathrm{~cm}, \mathrm{PR}=3 \mathrm{~cm}$
Q7.
$\mathrm{EF}=3 \mathrm{~cm} . \mathrm{DF}=4 \mathrm{~cm}, \mathrm{DE}=5 \mathrm{~cm}$
Q10
(b)

Q13 24cm
Q15
16 cm

