

INTSO EDUCATION

SCIENCE TALENT SEARCH OLYMPIAD (STSO) 2015-16

CLASS : IX

STAGE - 1

TIME : 60 min. Max. Marks : 50

Instructions:

- ∽ *Fill the OMR sheet completely and carefully.*
- ∽ Each question carries one mark and has only one correct answer. No negative marks
- ∽ The question paper contains 50 questions to be answered in 60 minutes.

PHYSICS

A particle starts from rest with uniform acceleration 'a'. Its velocity after n seconds is 'V' .The 1. displacement of the body in the last two seconds is 1 Γ

1)
$$\frac{2V(n-1)}{n}$$
 2) $\frac{V(n-1)}{n}$ 3) $\frac{V(n+1)}{n}$ 4) $\frac{2V(n+1)}{n}$

2. A stone is dropped into a well in which the level of water is 'h' depth below the top of the well. If 'v' is velocity of sound, the time 'T' after which the splash is heard is given by

1)
$$T = \frac{2h}{v}$$
 2) $T = \sqrt{\frac{2h}{g}} + \frac{h}{v}$ 3) $T = \sqrt{\frac{2h}{g}} + \frac{h}{2v}$ 4) $T = \sqrt{\frac{h}{2g}} + \frac{2h}{v}$

A body is projected upwards with a velocity u. It passes through a certain point above the ground 3. after t₁. The time after which the body passes through the same point during the return journey is

1)
$$\left(\frac{u}{g}-t_1^2\right)$$
 2) $2\left(\frac{u}{g}-t_1\right)$ 3) $3\left(\frac{u^2}{g}-t_1\right)$

- Figure shows position time graph of two cars A and B 4. 1) Car A is faster than Car B
 - 2) Car B is faster than Car A
 - 3) Both Cars are moving with same velocity
 - 4) Both Cars are at rest

Two blocks A and B of masses m and 2m respectively are held at rest such that the spring is in 5. natural length. Find out the acceleration of both the blocks just after release 1 E

1) $g \downarrow, g \downarrow$ 2) $\frac{g}{3}\downarrow, \frac{g}{3}\uparrow$ Spring 3) 0.0 4) $g \downarrow 0 \uparrow$ B 2m In which of the following cases the net force is not zero?

1

ſ

1

1

Γ

4) $3\left(\frac{u^2}{g^2}-t_1\right)$

x(m)

- 1) A kite skillfully held stationary in the sky
- 2) A ball freely falling from a height with uniform velocity
- 3) An aeroplane rising upwards at an angle of 45° with the horizontal with a constant speed
- 4) A cork floating on the surface of water

6.

7.	A truck carrying a sand is moving on a smooth horizontal road with a uniform speed 'u'. If a mass ' Δm ' of sand leaks in time Δt from the bottom of the truck, the force needed to keep the truck								
	moving at its uniform	speed u is given by			[]				
	1) $\frac{\Delta m u}{\Delta t}$	2) $\frac{\Delta m u}{2\Delta t}$	3) $\frac{\Delta m u^2}{\Delta t}$	4) 0					
8.	A machine gun fires 10 then force of recoil is 1) 200 dyne	0 bullets per second, each 2) 2000 dyne	h of mass 10g, the speed 3) 20 dyne	l of each bullet i 4) 10 dyne	s 20cm/s, []				
9.	Two particles are place keeping the distance be be	ced at some distance. If etween them unchanged,	the mass of each of the the value of gravitation	e two particles i al force between	s doubled, n them will []				
	1) 1 / 4 times	2) 4 times	3) $\frac{1}{2}$ times	4) unchanged	l				
10.	Imagine a planet havin earth. If acceleration d g ¹ then	ng the same density as that lue to gravity on the surfa	at of earth but radius is t ace of the earth is 'g' an	hree times the ra d that of the oth	idius of the er planet is []				
	1) $g^1 = g / 9$	2) $g^1 = 9g$	3) $g^1 = \frac{g}{27}$	4) $g^1 = 3g$					
11.	A solid of density ρ_s is above the liquid surface	s floating on a liquid of ce is	density $\rho_l(>\rho_s)$. The	fraction of volu	ne of solid				
	1) $\frac{\rho_s}{\rho_l}$	2) $\frac{\rho_s}{\rho_l} - 1$	$3) 1 - \frac{\rho_s}{\rho_l}$	4) $\frac{\rho_l}{\rho_s}$					
12.	A block of ice is floatin the level of water 1) rises	g in a liquid of specific gr	avity 1.2 in a beaker. Wh	en the ice melts c	completely,				
	3) remains same		4) first increases and	then goes down					
13.	A body moving at 2 m long will it go before c 1) X	n /s can be stopped over coming to rest, if the reta 2) 2 X	a distance X. If its kine rding force remains unc 3) 4 X	tic energy is dou changed 4) 8 X	ibled, how				
14.	Calculate the work do a lake through a heigh 1) 125 J	ne in raising a stone of n t of 5 metre (g = 10 m / 2) 25 J	nass 5 kg and specific g s ²) 3) 100 J	ravity 2 lying at 4) 50 J	the bed of				
15.	A 12 hp motor has to b in 10 days 1) ₹ 350	e operated 8 hour / day.2) ₹ 358	How much will it cost a 3) ₹ 375	t the rate of 50 p 4) ₹ 397	aisa / kWh []				
16.	Velocity of sound in a I. Increase with temper III. Increase with press 1) only I and II are tru 3) only II and III are tru	ir rature sure e ue	[] II. decrease with temperature IV. is independent of pressure 2) only I and III are true 4) only I and IV are true						
17.	In the sound wave proo is represented by	duced by a vibrating turn	ing fork shown in the dia	agram, half the v	vavelength				
	1) AB 3) DE	2) BD 4) AE	A B C D E	_					

CHEMISTRY																
18.	While heating ice in a beaker with a thermometer suspended in it, a student recorded the following observations []]													owing]		
	Time in min	0	1	2	3	4	5	6	7	8	10	15	20	25	30	35
	Temp(in °C)	-3	-1	0	0	5	8	12	15	19	22	30	50	73	100	100
	What is the nat 1) Fusion	me of	the p	proce 2) Bo	ess for iling	the	chan	ge obs 3)	erved Evapo	in be pration	tween 1	2 min 4)	to 3	min densa	tion	
19.	An inflated balloon goes down because gas molecules can diffuse through the rubber. Four balloons are filled with different gases at the same temperature and pressure. Which balloon would go down most quickly?								Four would]							
	$\begin{array}{cccc} A \\ & & $															
	Carbon	/ dioxio	le, C	CO_2	M	letha	ne, C	CH_4	Nitro	gen, l	N_2	Ох	xygen	, O ₂		
	1) A		2	2) B				3)	С			4)	D			
20.	D. State of a substance can be determined by [] 1) Temperature 2) Pressure 3) Both 1 and 2 4) None of these															
21.	 21. Arun has prepared 0.01% (by mass) solution of NaCl in water. Which of the following correctly represents the composition of the solutions? 1) 1.00 g of NaCl + 100 g of water 3) 0.01 g of NaCl + 99.99 g of water 															
22.	2. Melting point of 3 solids X, Y and Z are 298 K, 314 K and 398 K respectively. The correct increasing order of interparticle forces of attractions of X, Y and Z are $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 1) Z > Y > X 2) Z < Y < X 3) Y < X < Z 4) X < Y < Z															
23.	During boiling, temperature of water 1) Increases 2) Decreases							1 5 3)	Rema	ins co	onstant	t d)	All c	of thes	[se]
24.	What is the dif	ferenc	e be	etwee	en two	o tem	perat	tures y	K⁰K ar	d (X-	+273)	° K			[]
	a) 2/3 K 1) only a		t 2	o) 0⁰(2) bot) th a ai	nd b		c) 3)	only b)		4)	both	a and	l c	
25.																
		N (P	Japh owd	thale er so	ene + olid)	Amn (Po	noniı wder	um ch solid	loride)							
						Wat	er									
					V											
	$\bigvee \qquad \qquad$															
										coolii	ng					
]				
						Filte	▼ rate ((W)			Solid	▼ l crvst	als (7	2)		
	Filterate (W) Solid crystals (Z)															

32.	Ramu extracted sucro beet root and kept in a substance after mixing	se from sugarcane and k another bottle 'B'. Latha g is	ept in a bottle 'A'. Krish mix the products of two	na extracted su bottles togethe	crose f r. Now [rom v the				
	 i) a pure substance iii) true solution 1) only ii, iii are correct 3) only ii, iii and iv are 	iv) a compound ct e correct	ii) a mixturev) an impure substance2) only i and iv are correct4) only ii and v are correct							
33.	When an electric curr then gas Y is liberated X is the ratio of mass of gas Z, then find the 1) 1 : 16	ent is passed through 18 l at cathode and gas Z is of gas Y to mass of the g ratio of X to W 2) 1 : 8	0g of a liquid (whose m liberated at anode. gas Z. W is the ratio of ve 3) 2 : 1	olecular mass i olume of gas Y 4) 1 : 4	s 18 aı to vol [mu), ume]				
34.	The mass of one atom 1) 3	1 of an element is 2.0×1 2) 1	0^{-23} g then, find the vale 3) 2	ncy of that elem 4) 4	nent []				
		BIOLO	DGY							
35.	According to cell theo 1) Cells originate from 3) Cells can not divide	ory n abiotic materials e	2) Cells originate from4) Cells formed by reg	[] ate from pre existing cells d by regeneration of old cells						
36.	Match the following a) Lysosomes b) Golgi complex c) Centrosome d) Plasma membrane		[] I) cell division II) Semipermeability III) Intracellular & Extracellular digestion IV) Protein synthesis V) Protein secretion							
	A B C	D	A B C	D						
	I)IVVIII3)IIIVI		2) V III IV 4) V IV III	II I						
37.	Eukaryotes possess 8 r– RNA 1) 18S	30S ribosomes. Larger s2) 28s+5.8s+5s	sub unit of 80s ribosor 3) 16s	4) 23s +5s	follov [ving]				
38.	Fluid mosaic model of cell membrane is represented by[1) A lipid bilayer with embedded proteins2)2) Only lipid bilayer3)3) A lipid bilayer with proteins on outer surface only4) A protein bilayer with lipids on both the surfaces									
39.	 Assertion (A): Janus green B is a vital stain used for identification of mitochondria [] Reason (R): Janus green B is oxidised by an enzyme cytochrome a₂ present in mitochondria 1) Both A and R are correct, and R is the correct explanation of A. 2) Both A and R are correct, but R is not the correct explanation of A. 3) A is correct and R is incorrect. 									
40.	Identify the tissue wit 1) Vascular tissue	h thin cell walls, promine 2) Meristematic tissue	ent nucleus and dense cy 3) Epithelial tissue	toplasm 4) Sclerenchy	[/ma]				
41.	Statement (I): The ac Statement (II): Sieve 1) Statement I is true 3) Both statements are	e true	 2) Statement II is true 4) Both statements are 	false]]				

42.	 Which of the following statements are correct . I) Outer most coverings of plant body consists of dermal tissue II) If any plant part is damaged it is repaired by ground tissue III) Water & Food materials are transported by vascular tissues 										
	1) I & III	2) II & III		3) I	& II		4) I,II, & III	L]		
43.	Identity the tissue i) With dead cells iii) With less inter cellular spaces				[] ii) With lignin deposition						
	1) Parenchyma	nyma	3) C	Collenchy	ma	4) Aerenchyn	na	7			
44.	Observe the following		E - 4 ^{²} -					L]		
	Components of xylem Function 1) Trachinda & Vacada										
	1)1 rachieds & vesselsP2)ParenchymaQ3)FibresR										
	Identify the functions of P and R 1) P – support, R – Transport of water & minerals 2) P– Transport of water & minerals R – Storage of Food 3) P– Transport of water & minerals, R– Support 4) P– Storage of Food, R– Transport of water & minerals										
45.	Match the followingEpitheliumA. Squamous EpitheliumB. Stratified EpitheliumC. Cuboidal EpitheliumD. Columnar EpitheliumV. Wall of Trachea]		
	A B C 1) III V I 3) III IV II	D II I	INT	2) 4)	A B II II V T	C III VI	D V II				
46.	Identify the Universal	donor and Un	niversal reci	pient	t blood gr	oups		[]		
17	1) O ^{+ve} , AB ^{+ve}	2) O^{-ve}, AB^+	ve lidaa of on	3) (D-ve,AB-ve	undan mi	4) O^{+ve} , AB^{-ve}	ich of	ftha		
47.	following is correct reg	arding her id	entification	IIIIai	ussues		croscope. wh	[]		
	Slide	Tissue		Loc	ation		Function				
	1) D	Squamous		Join	its		Packaging of	tissue	S		
	2) C	Areolar		Rib	S		Repair of tiss	ues			
	3) B 4) A	Adipose tiss Bone	sue	Belo Ske	ow the Sk letal syste	tin m	Acts as insula Support for th	tor he bod	v		
L	,	-			- J - J		11		5		

48.	Identify the muscle lo	ocated at heart			[]	
	1) Branched, involuntary, striated		2) Unbranched, voluntary, non – striated 4) Unbranched involuntary striated				
49.	Anti - coagulant pres 1) Histamine	ent in the blood is 2) Heparin	3) Prostaglandin	4) Albumin	[]	
50.	Which of the following is incorrect [

- 50. Which of the following is incorrect
 - 1) Neurons have dendrite, Axon, cell body
 - 2) Axons of some neurons are covered with myelin sheath
 - 3) Neurons with myelinated sheath can carry nerve impulses very fast compared non myelinated neurons
 - 4) Neurons with out myelin sheath can carry nerve impulses very fast compared to myelinated neurons.

