

9.	From the given figure diagonals AC and BD of a quadrilateral ABCD meet at E. If AE = 2, BE =						
	5, CE = 10, DE = 4 ar	nd BC = $\frac{15}{2}$, then the left	ngth of AB		[]	
	1) $\frac{\sqrt{161}}{2}$	2) $\frac{\sqrt{171}}{2}$	$ \begin{array}{c} A \\ 2 \\ 4 \\ 10 \\ 15 \\ 2 \end{array} $				
	3) $\frac{\sqrt{151}}{2}$	4) $\frac{\sqrt{141}}{2}$	DC				
10.	If $\Delta PQR \cong \Delta BAC$ and 1) 1cm	d AB = (3x - 2) cm and 2) 3cm	QP = (2x + 3) cm, then 3) 5cm	n x = 4) 2cm	[]	
11.	$\sqrt{3}$ is a polynomial of	f degree			[]	
	1) $\frac{1}{2}$	2) 2	3) 1	4) 0			
12.	If $(x^2 + kx - 3) = (x - 1)^2$	(x + 1), then k = 2) - 2	3) 3	4) – 1	[]	
13.	If $x + y + z = 9$ and $xy = 1$ 108	y + yz + zx = 23, then the 2) 207	the value of ($x^3 + y^3 + z^3$) 3) 669	- 3xyz) = 4) 729	[]	
14.	The polynomial $p(x)$ s the remainder when p 1) $2x$	satisfies $p(-x) = -p(x)$. I (x) is divided by $x^2 - 9$ 2) $3x + 4$	If p(x) is divided by x – 3 3) 2x + 3	3, the remainde4) 5x + 3	r is 6. [then]	
15.	If x, y, z are three sur	ms of money such that	y is the simple interest	on x and z is	the sin	nple	
	1) $x^2 = yz$	2) $y^2 = zx$	3) $z^2 = xy$	4) $x^2 = y^2 + z^2$	L 2]	
16.	If a, b, c, d are positive	e integers such that $a = b$	bed, $b = cda$, $c = dab$ and	d = abc, then the the second secon	ne valu	ie of	
	$\frac{(a+b+c+d)^4}{(ab+bc+cd+da)}$ is	TNI	50		[]	
	1) 14	2) 13	3) 12	4) 16			
17.	If the polynomial $ax^3 + 4x^2 + 3x - 4$ and $x^3 - 4x + a$ leave the same remainder when divided by $x = 3$, then the value of $ a $ is						
	1) 1	2) – 1	3) 2	4) 0	L	1	
18.	The coefficient of x in 1) 1	expansion of $(x + 3)^3$ 2) 9	is 3) 18	4) 27	[]	
19.	If $x = 7 + 4\sqrt{3}$, then t	the value of $\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)$	is		[]	
	1) 7	2) 4	3) 6	4) 8			
20.	The points in which a 1) quadrants I and II 3) quadrants IV and II	bscissa and ordinate hav	ve diffrent signs will lie i2) quadrants I and IV4) quadrant II only	n	[]	
	-		- •				
21.	The perpendicular dis	tance of the point p(a, b	b) from the Y - axis is		[]	

22.	If the height of an equilateral triangle is 6cm, then the area of triangle is]
	1) $4\sqrt{3} \ cm^2$	2) $6\sqrt{3} \ cm^2$	3) $9\sqrt{3} \ cm^2$	4) $12\sqrt{3} \ cm^2$		
23.	The graph of the linear $1)(4, 0)$	r equation $4x + 3y = 12$, 2) (0, 4)	cuts the x - axis at the j 3) (0, 3)	point 4) (3, 0)	[]
24.	If each of $(-3, 3)(0, 0)$, $(3, -3)$ is a solution of a linear equation in x and y, then the					ion
	1) $x - y = 0$	2) $x + y = 0$	3) - 2x + y = 0	4) - x + 2y = 0	0	1
25.	The perpendicular dist	ance from the point (2,	-7) to the line $2x - 5y - 5$	-10 = 0 is	[]
	1) $\frac{1}{\sqrt{2}}$ units	2) $\frac{1}{\sqrt{3}}$ units	3) $\frac{1}{\sqrt{5}}$ units	4) $\frac{1}{2\sqrt{2}}$ units		
26.	The angle between the 1) 60°	e lines x + y + 1 = 0, x - 2) 45°	-5 = 0 in 1st quadrant is 3) 135°	3 4) 30°	[]
27.	A line L cuts the sides AB, BC of $\triangle ABC$ in the ratio $3:5:, 7:4$ respectively the					o in
	which the line L cuts C 1) 7 : 10	CA is 2) 3 : 10	3) 10 : 7	4) 4 : 5	L]
28.	The distance between	the points $(-3, 1)$ and $($	(3, 2) is		[]
	1) $\sqrt{27}$ units	2) $\sqrt{33}$ units	3) $\sqrt{47}$ units	4) $\sqrt{37}$ units		
29.	For the equation $5x + 3$ 1) 6	8y = 50. If $y = 10$, then 2) - 6	the value of x is 3) 12	4) – 12	[]
30.	How much pure alcoho 1) 50 ml	ol should be added to 60 2) 140 ml	00 ml of a 15% solution 3) 150 ml	to make its stre 4) 75 ml	ngth 3 [2%]
31.	If one number is thrice 1) 15	e the other and their sum 2) 12	is 20, then the greatest 3) 9	number is 4) 6	[]
32.	2. Two planes starts from a city and fly in opposite directions one average in a speed greater than the other. If they are 3400 km, apart after 5 hours, the average speeds					/ hr /ely
	are 1) 330 kmph , 370 kmph 3) 250 kmph, 290 kmph		2) 320 kmph, 360 kmph4) 300 kmph, 340 kmph		L]
33.	The equation of a line 1) $y = k$	parallel to Y - axis is 2) $x = k$	3) $y = 0$	4) $x = 0$	[]
34.	The value of k if $x = 3$ 1) 10	y = 1 is a solution of the 2) 9	the equation $2x + 5y = k$ 3) 11	is 4) 12	[]
35.	The lines $2x + 3y = 9$, 1) Vertical lines	4x + 6y = 18 are 2) coincident lines	3) parallel lines	4) intersecting	[g lines]
36.	If $x + y = 3$, $x - y = 1$, 1) (2, 1)	then $(x, y) =$ 2) (1, 2)	3) (3, 1)	4) (1,4)	[]
37.	If the equations ($2a - 1$) 0	1)x + (a - 1) y = 2a + 1 2) 1	y + 3x - 1 = 0 have no 3) 2	solution, then $4) - 1$	a = []
38.	38. The sides of a triangle are in the ratio 5 : 12 : 13 and its perimeter is 150cm. The ar					
	triangle is 1) 375 cm ²	2) 750 cm ²	3) 250 cm ²	4) 500 cm ²	L]
i						

39.	$\frac{1}{59}$. The park in the shape of a quadrilateral ABCD has AB = 9m, BC = 12m, CD - 5m, A					
	$\underline{C} = 90^{\circ}$. The area of	the park is	A 8m		[]	
	1) 65.4 m ² 2) 55.4m ² 3) 45.4m ² 4) 72.4m ²		9m D $5m$ B $12m$ C			
40.	The radius of a circle chord from the centre 1) 5cm	is 13cm and the length is 2) 7cm	of one of its chords is 1 3) 10cm	10 cm. The dista 4) 12cm	ince of the	
41.	In the given figure 'O' 1) 70°	is the centre of a circle 2) 80°	and $ AOB = 140^\circ$, then 3) 110°	$\frac{ ACB }{40^{\circ}}$ is	[]	
42.	Two chords AB and C 11cm, BE = 3cm and 1) 10.5 cm	CD of a circle intersect of DE = 3.5 cm, then the 1 2) 9.5 cm	each other at a point E ength of CD is	outside the circl	e. If AB =	
	3) 8.5 cm	4) 7.5 cm				
43.	The maximum lengt ($8 \text{cm} \times 6 \text{cm} \times 5 \text{cm}$)	h of a pencil that can $2) 9.5$ cm	a be placed in rectang	gular box of di (4) 11.2 cm	imensions []	
11	Type simples of modii 7	2) 9.3 cm	3) 190111	4) 11.2 cm	tracic	
44.	1) 7cm	2) 3cm	3) 4cm	4) 11cm	[]	
45.	The perimeter of a rig cm is 1) 506	ht angled triangle is 144	fcm and the hypotnuse i	4) 504	a in square	
46.	In figure diagonals AC perpendicular distance	C and BD of a parallelo between AB and CD is	gram ABCD intersect a s 8cm. The area of ΔAC	t O. If $AB = 10c$ BB is	cm and the	
	 1) 20cm² 2) 15 cm² 3) 25cm² 4) 28 cm² 	A B C	-50			
47.	In figure G is the cent 1) 18cm ² 2) 20 cm ² 3) 22cm ² 4) 24 cm ²	roid of $\triangle ABC$ such tha	t GD = 3 cm and BC = 4	cm.The area of	ΔABC is []	
48.	ABCD is a trapezium of the non parallel side	with parallel sides AB = es the ratio of area ABE	= a cm and CD = b cm. EF and area of EFCD	E and F are the $D_b C$	mid points []	
	1) a : b 3) (a + 3b) : (3a + b)		2) $(3a + b) : (a + 3b)$ 4) $(2a + b) : (3a + b)$	A = A = B	6	
49.	The angle between tw between radius drawn 1) 100°	o tangents drawn from at point of contact of ta 2) 90°	a point outside of a circ angent is 3) 120°	cle is 100°. Ther 4) 80°	the angle	
50.	If $x < 0$ and $y > 0$ the 1) I quadrant	n the point (– x, y) lies 2) II quadrant	in 3) III quadrant	4) IV quadrar	[] nt	