SNTSO
CLASS : IX
Instructions:
$\Rightarrow \quad$ Fill the OMR sheet completely and carefully.
$\Rightarrow \quad$ Each question carries one mark and has only one correct answer. No negative marks.
$\Rightarrow \quad$ The question paper contains 50 questions to be answered in 60 minutes.

1. The angles of a quadrilateral measure $56^{\circ}, 115^{\circ}$ and 84°, then the fourth angle is
1) 110°
2) 95°
3) 105°
4) 115°
2. If an angle of a parallelogram is four fifths of its adjacent angle, then the angle is
1) 110°
2) 120°
3) 90°
4) 80°
3. The lengths of each side of a rhombus is 10 cm and one of its diagonals is of length 16 cm . The length of the other diagonal is
1) 13 cm
2) 12 cm
3) $2 \sqrt{39} \mathrm{~cm}$
4) 6 cm
4. The bisectors of two adjacent angles of a parallelogram intersect at
1) 30°
2) 45°
3) 60°
4) 90°
5. In a trapezium ABCD , if E and F be the mid points of the diagonals AC and BD respectively, then the length of EF is
1) $\frac{1}{2} A B$
2) $\frac{1}{2} C D$
3) $\frac{1}{2}(A B+C D)$
4) $\frac{1}{2}(A B-C D)$

6. The area of the figure formed by joining the midpoints of the adjacent sides of a rectangle of sides 8 cm and 6 cm is
1) a rectangle of area $24 \mathrm{~cm}^{2}$
2) a rhombus of area $24 \mathrm{~cm}^{2}$
3) a rectangle of area $16 \mathrm{~cm}^{2}$
4) a rhombus of area $28 \mathrm{~cm}^{2}$
7. In the given figure the relation between $\lfloor x, \underline{y}, \underline{z}$ is
1) $\underline{x}+\underline{z}=\underline{y}$
2) $\underline{y}+\underline{z}=\underline{x}$
3) $\underline{z}-\underline{x}=\underline{y}$
4) $\underline{x}-\underline{y}=\underline{z}$

8. E is a point on side $\overline{A D}$ of rectangle ABCD so that $\mathrm{DE}=6, \mathrm{DA}=8$ and $\mathrm{DC}=6$. If $\overline{C E}$ is extended meets the circum circle of rectangle at F . Then the length of the chord $\overline{D F}$ is
1) 6 cm
2) 5 cm
3) $5 \sqrt{2} \mathrm{~cm}$
4) $6 \sqrt{2} \mathrm{~cm}$

9. From the given figure diagonals AC and BD of a quadrilateral ABCD meet at E . If $\mathrm{AE}=2, \mathrm{BE}=$ $5, \mathrm{CE}=10, \mathrm{DE}=4$ and $\mathrm{BC}=\frac{15}{2}$, then the length of AB
1) $\frac{\sqrt{161}}{2}$
2) $\frac{\sqrt{171}}{2}$
3) $\frac{\sqrt{151}}{2}$
4) $\frac{\sqrt{141}}{2}$

10. If $\triangle P Q R \cong \triangle B A C$ and $\mathrm{AB}=(3 \mathrm{x}-2) \mathrm{cm}$ and $\mathrm{QP}=(2 \mathrm{x}+3) \mathrm{cm}$, then $\mathrm{x}=$
1) 1 cm
2) 3 cm
3) 5 cm
4) 2 cm
11. $\sqrt{3}$ is a polynomial of degree
1) $\frac{1}{2}$
2) 2
3) 1
4) 0
12. If $\left(x^{2}+k x-3\right)=(x-3)(x+1)$, then $k=$
1) 2
2) -2
3) 3
4) -1
13. If $x+y+z=9$ and $x y+y z+z x=23$, then the value of $\left(x^{3}+y^{3}+z^{3}-3 x y z\right)=$
1) 108
2) 207
3) 669
4) 729
14. The polynomial $p(x)$ satisfies $p(-x)=-p(x)$. If $p(x)$ is divided by $x-3$, the remainder is 6 . then the remainder when $p(x)$ is divided by $x^{2}-9$
1) $2 x$
2) $3 x+4$
3) $2 x+3$
4) $5 x+3$
15. If x, y, z are three sums of money such that y is the simple interest on x and z is the simple interest on y for the same time and rate then
1) $x^{2}=y z$
2) $y^{2}=z x$
3) $z^{2}=x y$
4) $x^{2}=y^{2}+z^{2}$
16. If $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are positive integers such that $\mathrm{a}=\mathrm{bcd}, \mathrm{b}=\mathrm{cda}, \mathrm{c}=\mathrm{dab}$ and $\mathrm{d}=\mathrm{abc}$, then the value of $\frac{(a+b+c+d)^{4}}{(a b+b c+c d+d a)}$ is
1) 14
2) 13
3) 12
4) 16
17. If the polynomial $a x^{3}+4 x^{2}+3 x-4$ and $x^{3}-4 x+$ a leave the same remainder when divided by $x-3$, then the value of ' a ' is
1) 1
2) -1
3) 2
4) 0
18. The coefficient of x in expansion of $(x+3)^{3}$ is
1) 1
2) 9
3) 18
4) 27
19. If $x=7+4 \sqrt{3}$, then the value of $\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)$ is
1) 7
2) 4
3) 6
4) 8
20. The points in which abscissa and ordinate have diffrent signs will lie in
1) quadrants I and II
2) quadrants I and IV
3) quadrants IV and II
4) quadrant II only
21. The perpendicular distance of the point $\mathrm{p}(\mathrm{a}, \mathrm{b})$ from the Y - axis is
1) $|a|$ units
2) $|b|$ units
3) $|a+b|$ units
4) $|a-b|$ units
22. If the height of an equilateral triangle is 6 cm , then the area of triangle is
1) $4 \sqrt{3} \mathrm{~cm}^{2}$
2) $6 \sqrt{3} \mathrm{~cm}^{2}$
3) $9 \sqrt{3} \mathrm{~cm}^{2}$
4) $12 \sqrt{3} \mathrm{~cm}^{2}$
23. The graph of the linear equation $4 x+3 y=12$, cuts the $x-$ axis at the point
1) $(4,0)$
2) $(0,4)$
3) $(0,3)$
4) $(3,0)$
24. If each of $(-3,3)(0,0),(3,-3)$ is a solution of a linear equation in x and y, then the equation is
1) $x-y=0$
2) $x+y=0$
3) $-2 x+y=0$
4) $-x+2 y=0$
25. The perpendicular distance from the point $(2,-7)$ to the line $2 x-5 y-10=0$ is
1) $\frac{1}{\sqrt{2}}$ units
2) $\frac{1}{\sqrt{3}}$ units
3) $\frac{1}{\sqrt{5}}$ units
4) $\frac{1}{2 \sqrt{2}}$ units
26. The angle between the lines $x+y+1=0, x-5=0$ in 1st quadrant is
1) 60°
2) 45°
3) 135°
4) 30°
27. A line L cuts the sides AB, BC of $\triangle A B C$ in the ratio $3: 5:, 7: 4$ respectively then the ratio in which the line L cuts CA is
1) $7: 10$
2) $3: 10$
3) $10: 7$
4) $4: 5$
28. The distance between the points $(-3,1)$ and $(3,2)$ is
1) $\sqrt{27}$ units
2) $\sqrt{33}$ units
3) $\sqrt{47}$ units
4) $\sqrt{37}$ units
29. For the equation $5 x+8 y=50$. If $y=10$, then the value of x is
1) 6
2) -6
3) 12
4) -12
30. How much pure alcohol should be added to 600 ml of a 15% solution to make its strength 32%
1) 50 ml
2) 140 ml
3) 150 ml
4) $75 \mathrm{ml} \quad[\quad]$
31. If one number is thrice the other and their sum is 20 , then the greatest number is
1) 15
2) 12
3) 9
4) 6
32. Two planes starts from a city and fly in opposite directions one average in a speed of $40 \mathrm{~km} / \mathrm{hr}$ greater than the other. If they are 3400 km , apart after 5 hours, the average speeds respectively are
1) $330 \mathrm{kmph}, 370 \mathrm{kmph}$
2) $320 \mathrm{kmph}, 360 \mathrm{kmph}$
3) $250 \mathrm{kmph}, 290 \mathrm{kmph}$
4) $300 \mathrm{kmph}, 340 \mathrm{kmph}$
33. The equation of a line parallel to Y - axis is
1) $y=k$
2) $x=k$
3) $y=0$
4) $x=0$
34. The value of k if $x=3, y=1$ is a solution of the equation $2 x+5 y=k$ is
1) 10
2) 9
3) 11
4) 12
35. The lines $2 x+3 y=9,4 x+6 y=18$ are
1) Vertical lines
2) coincident lines
3) parallel lines
4) intersecting lines
36. If $x+y=3, x-y=1$, then $(x, y)=$
1) $(2,1)$
2) $(1,2)$
3) $(3,1)$
4) $(1,4)$
37. If the equations $(2 a-1) x+(a-1) y=2 a+1, y+3 x-1=0$ have no solution, then $a=$
1) 0
2) 1
3) 2
4) -1
38. The sides of a triangle are in the ratio $5: 12: 13$ and its perimeter is 150 cm . The area of the triangle is
1) $375 \mathrm{~cm}^{2}$
2) $750 \mathrm{~cm}^{2}$
3) $250 \mathrm{~cm}^{2}$
4) $500 \mathrm{~cm}^{2}$
39. The park in the shape of a quadrilateral ABCD has $\mathrm{AB}=9 \mathrm{~m}, \mathrm{BC}=12 \mathrm{~m}, \mathrm{CD}-5 \mathrm{~m}, \mathrm{AD}=8 \mathrm{~m}$ and $\underline{C}=90^{\circ}$. The area of the park is
1) $65.4 \mathrm{~m}^{2}$
2) $55.4 \mathrm{~m}^{2}$
3) $45.4 \mathrm{~m}^{2}$
4) $72.4 \mathrm{~m}^{2}$

40. The radius of a circle is 13 cm and the length of one of its chords is 10 cm . The distance of the chord from the centre is
1) 5 cm
2) 7 cm
3) 10 cm
4) 12 cm
41. In the given figure ' O ' is the centre of a circle and $\left\lfloor A O B=140^{\circ}\right.$, then $\lfloor A C B$ is
1) 70°
2) 80°
3) 110°
4) 40°
42. Two chords AB and CD of a circle intersect each other at a point E outside the circle. If $\mathrm{AB}=$ $11 \mathrm{~cm}, \mathrm{BE}=3 \mathrm{~cm}$ and $\mathrm{DE}=3.5 \mathrm{~cm}$, then the length of CD is
1) 10.5 cm
2) 9.5 cm
3) 8.5 cm
4) 7.5 cm

43. The maximum length of a pencil that can be placed in rectangular box of dimensions $(8 \mathrm{~cm} \times 6 \mathrm{~cm} \times 5 \mathrm{~cm})$
1) 8 cm
2) 9.5 cm
3) 19 cm
4) 11.2 cm
44. Two circles of radii 7 cm and 4 cm touch externally then the distance between the centres is
1) 7 cm
2) 3 cm
3) 4 cm
4) $11 \mathrm{~cm} \quad[\quad]$
45. The perimeter of a right angled triangle is 144 cm and the hypotnuse is 65 cm . Its area in square cm is
1) 506
2) 508
3) 1440
4) 504
46. In figure diagonals AC and BD of a parallelogram ABCD intersect at O . If $\mathrm{AB}=10 \mathrm{~cm}$ and the perpendicular distance between AB and CD is 8 cm . The area of $\triangle A O B$ is
1) $20 \mathrm{~cm}^{2}$
2) $15 \mathrm{~cm}^{2}$
3) $25 \mathrm{~cm}^{2}$
4) $28 \mathrm{~cm}^{2}$

47. In figure G is the centroid of $\triangle A B C$ such that $\mathrm{GD}=3 \mathrm{~cm}$ and $\mathrm{BC}=4 \mathrm{~cm}$. The area of $\triangle A B C$ is
1) $18 \mathrm{~cm}^{2}$
2) $20 \mathrm{~cm}^{2}$
3) $22 \mathrm{~cm}^{2}$
4) $24 \mathrm{~cm}^{2}$

48. ABCD is a trapezium with parallel sides $\mathrm{AB}=\mathrm{acm}$ and $\mathrm{CD}=\mathrm{bcm}$. E and F are the mid points of the non parallel sides the ratio of area ABEF and area of EFCD
1) $a: b$
2) $(3 a+b):(a+3 b)$
3) $(a+3 b):(3 a+b)$
4) $(2 a+b):(3 a+b)$

49. The angle between two tangents drawn from a point outside of a circle is 100°. Then the angle between radius drawn at point of contact of tangent is
1) 100°
2) 90°
3) 120°
4) 80°
50. If $x<0$ and $y>0$ then the point $(-x, y)$ lies in
1) I quadrant
2) II quadrant
3) III quadrant
4) IV quadrant
