INTSO
CLASS : IX
Instructions:
$\Rightarrow \quad$ Fill the OMR sheet completely and carefully.
$\Rightarrow \quad$ Each question carries one mark and has only one correct answer. No negative marks.
$\Rightarrow \quad$ The question paper contains 50 questions to be answered in 60 minutes.

1. Euclid belongs to which country
1) India
2) Greece
3) Egypt
4) Babylonia
2. Which of the following needs a proof
1) an axiom
2) a definition
3) a postulate
4) a Theorem
3. The measure of an angle which is $32^{\circ}$ less than its supplement is
1) $74^{\circ}$
2) $80^{\circ}$
3) $148^{\circ}$
4) $106^{\circ}$
4. In the adjoining figure $\overline{A O B}$ is a stright line then $\angle A O C$ and $\angle B O D$
1) 40,80
2) 45,70
3) 50,60
4) 55,65

5. In the given figure $A B \| C D$, then the value of x ?
1) $40^{\circ}$
2) $50^{\circ}$
3) $60^{\circ}$
4) $75^{\circ}$

6. The angles of a triangle are in the ratio $2: 3: 7$. Then the Measure of least angle is
1) $30^{\circ}$
2) $60^{\circ}$
3) $15^{\circ}$
4) $45^{\circ}$
7. In $\triangle A B C \angle A+\angle B=65^{\circ}$ and $\angle B+\angle C=140^{\circ}$ then $\angle B=$
1) $40^{\circ}$
2) $25^{\circ}$
3) $115^{\circ}$
4) $100^{\circ}$
8. In a square the angle between diagonals is
1) $70^{\circ}$
2) $80^{\circ}$
3) $90^{\circ}$
4) $65^{\circ}$
9. In a triangle the centroid divides the median in the ratio from vertex
1) $1: 2$
2) $2: 1$
3) $3: 2$
4) $2: 3$
10. Which of the following are always similar
1) two circles
2) two squares
3) two equilateral triangles
4) all the above
11. The zero of the polynomial $a x+b$ is
1) $\frac{b}{a}$
2) $\frac{-b}{a}$
3) 0
4) -1
12. The factor of the polynomial $f(x)=$ aox $x^{n}+a_{1} x^{n-1}+-----+a_{n}$ when $a_{0}+a_{2}+a_{4}+$ $\qquad$ = $\mathrm{a}_{1}+\mathrm{a}_{3}+\mathrm{a}_{5}----=$
1) $x-1$
2) $x+1$
3) $x+2$
4) $x-2$
13. If the roots of the equation $x^{5}+p x^{4}+q x^{3}+r x^{2}+s x+t=0$, be in A.P then
1) $4 \mathrm{p}^{5}-25 \mathrm{qp}^{3}-125 \mathrm{rp}^{2}+625 \mathrm{sp}-3125 \mathrm{t}=0$
2) $4 p^{5}-25 \mathrm{qp}^{3}+125 \mathrm{rp}^{2}-625 \mathrm{sp}+3125 \mathrm{t}=0$
3) $4 p^{5}+25 \mathrm{qp}^{3}+125 \mathrm{rp}^{2}+625 \mathrm{sp}-3125 \mathrm{t}=0$
4) $4 p^{5}+25 \mathrm{qp}^{3}-125 \mathrm{pp}^{2}-625 \mathrm{sp}-3125 \mathrm{t}=0$
14. For what value of $K$ if the polynomial $f(x)=2 x^{4}+3 x^{3}+2 k x^{2}+3 x+6$ is exactly divisible by $(x+2)$
1) 1
2) 2
3) -1
4) -2
15. The factors of $a^{2}+b-a b-a$ are
1) $a-1, a+b$
2) $a+1, a-b$
3) $a-1, a-b$
4) $a+1, a+b$
16. If $\alpha, \beta, \gamma$ are the roots of $\mathrm{x}^{3}+\mathrm{px}^{2}+\mathrm{qx}+\mathrm{r}=0$ then $\sum \alpha^{2} \beta$
1) $3-\mathrm{pqr}$
2) $3 p-r q$
3) $3 \mathrm{r}-\mathrm{pq}$
4) $3 p q-r$
17. The value of $(369)^{2}-(368)^{2}$
1) $1^{2}$
2) 81
3) 37
4) 737
18. The G.C.D of two polynomials $\left(x^{3}-2 x^{2}-x+2\right),\left(x^{3}-3 x^{2}-x+3\right)$ is
1) $x+1$
2) $x-1$
3) $x^{2}-1$
4) $x^{2}+1$
19. If $f(x)$ is a polynomial of degree $n$, with rational coefficients and $1+i, 3-\sqrt{2}$, and 7 are three roots of $f(x)=0$ then least value of ' $n$ ' is
1) 6
2) 4
3) 3
4) 5
20. If $x+y+z=1 ; x^{2}+y^{2}+z^{2}=2 ; x^{3}+y^{3}+z^{3}=3$ then $x^{5}+y^{5}+z^{5}=$ $\qquad$
1) 4
2) 5
3) 3
4) 6
21. The point at which the co- ordinate axes Meet is called .
1) the abscissa
2) the ordinate
3) the origin
4) the quadrant
22. If $x>0$ and $y<0$ then the point $(x,-y)$ lies in
1) quadrant -1
2) quadrant - II
3) quadrant - III
4) quadrant - IV
23. Which of the following points does not lies on the line $y=3 x+4$
1) $(1,7)$
2) $(2,10)$
3) $(-1,1)$
4) $(4,12)$
24. The perpendicular distance of the point $P(4,3)$ from the $y-$ axis is
1) 3 units
2) 4 units
3) 5 units
4) 7 units
25. Each side of an equilateral triangle measures 8 cm the area of triangle is
1) $8 \sqrt{3} \mathrm{~cm}^{2}$
2) $16 \sqrt{3} \mathrm{~cm}^{2}$
3) $32 \sqrt{3} \mathrm{~cm}^{2}$
4) $48 \mathrm{~cm}^{2}$
26. $\triangle A B C$ is divided into four regions with areas as shown in the diagram. Find x
1) $\frac{1998}{67}$
2) 1998
3) $\frac{1998}{57}$
4) 1968

27. The mirror image of the point $(-x,-y)$ in $x-$ axis
1) $(x, y)$
2) $(-x, y)$
3) $(x,-y)$
4) $(-x,-y)$
28. The line $\mathrm{y}=\mathrm{Mx}+\mathrm{c}$ cuts the $\mathrm{x}-$ axis at
1) $\left(\frac{C}{M}, 0\right)$
2) $(\mathrm{O}, \mathrm{C})$
3) $\left(\frac{-C}{M}, 0\right)$
4) $\left(0, \frac{C}{M}\right)$
29. The sides of a triangle are in the ratio $5: 12: 13$ and its perimeter is 150 m . Then the area of the triangle is
1) $700 \mathrm{M}^{2}$
2) $750 \mathrm{M}^{2}$
3) $650 \mathrm{M}^{2}$
4) $800 \mathrm{M}^{2}$
30. The base of an issosceles triangle is 80 cm and its area is $360 \mathrm{CM}^{2}$ then the perimeter of the triangle is
1) 160 CM
2) 162 CM
3) 170 CM
4) 150 CM
31. The equation $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ has how many solutions
1) 1
2) 2
3) Infinite
4) 4
32. The point of the form ( $\mathrm{a}, \mathrm{a}$ ) where $a \neq 0$ lies on
[ ]
1) $\mathrm{xm}-\mathrm{axis}$
2) $y$-axis
3) the line $y=x$
4) the line $x+y=0$
33. A linear equation in two variables x and y is of the form $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ where.
1) $a \neq 0, b \neq 0$
2) $a \neq 0, b=0$
3) $\mathrm{a}=0, b \neq 0$
4) $a=0, c=0$
34. How many linear equations in x and y can be satisfied by $\mathrm{x}=2, \mathrm{y}=3$.
1) only one
2) only two
3) infinitely many
4) none
35. The area of the triangle formed by the line $x+\beta y=12$ and the co-ordinate axes is
1) 12 sq units
2) 18 sq.units
3) 24 sq.units
4) 30 sq units
36. System of equations $a_{1} x+b_{1} y+c_{1}=0, a_{2} x+b_{2} y+c_{2}=0$ has no solution then
1) $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}$
2) $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
3) $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
4) $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
37. The number of natural number pairs ( $\mathrm{x}, \mathrm{y}$ ) in which $\mathrm{x}>\mathrm{y}$ and $\frac{5}{x}+\frac{6}{y}=1$ is
1) 1
2) 2
3) 3
4) 4
38. The number of zeroes does 100 ! end with
1) 20
2) 25
3) 30
4) 24
39. The larger of two supplementary angles exceeds the smaller by 18 then the angles are
1) $98^{\circ}, 80^{\circ}$
2) $99^{\circ}, 81^{\circ}$
3) $96^{\circ}, 84^{\circ}$
4) $95^{\circ}, 85^{\circ}$
40. 5 pencils and 7 pens together cost is Rs. 50 where as 7 pencils and 5 pens together cost is Rs 46 then the cost of one pencil and one pen
1) Rs 3 , Rs 5
2) Rs 3, Rs 4
3) Rs 4, Rs 5
4) Rs 6 , Rs 7
41. Each side of an equilateral triangle is 8 cm , then its altitude is
1) $2 \sqrt{2} \mathrm{~cm}$
2) $2 \sqrt{3} \mathrm{~cm}$
3) $4 \sqrt{3} \mathrm{~cm}$
4) $2 \sqrt{6} \mathrm{~cm}$
42. Let A be the area of a square inscribed in a circle of radius $r$. Let ' $B$ ' be the area of a regular hexagon inscribed in the same circle then $\frac{B}{A}$
1) $\frac{\sqrt{3}}{4}$
2) $\frac{2 \sqrt{3}}{4}$
3) $\frac{3 \sqrt{3}}{4}$
4) $\sqrt{3}$
43. The area of a sector of a circle with radius 4 cm and of angle at centre is $30^{\circ}$
1) $4.39 \mathrm{~cm}^{2}$
2) $4.35 \mathrm{~cm}^{2}$
3) $4.19 \mathrm{~cm}^{2}$
4) $5 \mathrm{~cm}^{2}$
44. The length of the minute hand of a clock is 14 cm . Then the Area swept by the minute hand in 5 minutes
1) $\frac{152}{3} \mathrm{~cm}^{2}$
2) $\frac{154}{3} \mathrm{~cm}^{2}$
3) $\frac{148}{3} \mathrm{~cm}^{2}$
4) $\frac{136}{3} \mathrm{~cm}^{2}$
45. The Area of the circle with radius 7 cm is
1) $154 \mathrm{~cm}^{2}$
2) $172 \mathrm{~cm}^{2}$
3) $168 \mathrm{~cm}^{2}$
4) $162 \mathrm{~cm}^{2}$
46. The total surface Area of a cube with side 4 cm
1) $64 \mathrm{~cm}^{2}$
2) $96 \mathrm{~cm}^{2}$
3) $80 \mathrm{~cm}^{2}$
4) $90 \mathrm{~cm}^{2}$
47. Curved surface area of the sphere with radius rcm is
1) $2 \pi r^{2}$ sq.units
2) $6 \pi r^{2}$ sq.units
3) $4 \pi r^{2}$ sq.units
4) $3 \pi r^{2}$ sq.units
48. The volume of the cone of height 24 cm and radius of base is 7 cm
1) $1232 \mathrm{~cm}^{3}$
2) $2164 \mathrm{~cm}^{3}$
3) $2464 \mathrm{~cm}^{3}$
4) $1576 \mathrm{~cm}^{3}$
49. Find the Area of shaded region if ABCD is a square of side 14 cm and $\mathrm{APD}, \mathrm{BPC}$ are semicircles
1) $44 \mathrm{~cm}^{2}$
2) $42 \mathrm{~cm}^{2}$
3) $41 \mathrm{~cm}^{2}$
4) $40 \mathrm{~cm}^{2}$

50. The area of rectangle with length 20 cm and perimeter 64 cm
1) $36 \mathrm{~cm}^{2}$
2) $120 \mathrm{~cm}^{2}$
3) $240 \mathrm{~cm}^{2}$
4) $250 \mathrm{~cm}^{2}$

INTSO

