INTSO
CLASS : VIII
Instructions:
$\Rightarrow \quad$ Fill the OMR sheet completely and carefully.
$\Rightarrow \quad$ Each question carries one mark and has only one correct answer. No negative marks.
$\Rightarrow \quad$ The question paper contains 50 questions to be answered in 60 minutes.

1. If the product of two numbers is 4032 and their H.C.F is 12 , then the L.C.M of two numbers is
1) 336
2) 334
3) 236
4) 436
2. The $\frac{p}{q}$ form of $1.3 \overline{125}$ is
1) $\frac{6556}{4995}$
2) $\frac{13125}{9990}$
3) $\frac{6655}{4599}$
4) $\frac{6565}{4599}$
3. The greatest number of 5 digits which is exactly divisible by $24,60,84$ and 112 is
1) 99320
2) 99999
3) 99889
4) 99120
4. The standard form of 19800 is
1) $2^{3} \times 3^{2} \times 5^{2} \times 11^{2}$
2) $2^{3} \times 3^{2} \times 5^{2} \times 11$
3) $2^{2} \times 3^{3} \times 5^{3} \times 11$
4) $2^{2} \times 3^{2} \times 5^{3} \times 11$
5. The H.C.F of $1 \mathrm{M} 96 \mathrm{CM}, 3 \mathrm{M} 64 \mathrm{CM}$ and 4 M 20 Cm is
1) 22 cm
2) 32 cm
3) 28 cm
4) 26 cm
6. The pair of rational numbers that lie between $\frac{-2}{7}$ and $\frac{1}{3}$ are
1) $\frac{-3}{7}, \frac{-5}{7}$
2) $\frac{-4}{7}, \frac{2}{3}$
3) $0, \frac{1}{4}$
4) $0, \frac{2}{3}$
7. Among of the following is not a rational number
1) 0
2) 3.14159
3) $\frac{22}{7}$
4) π
8. The value of $\left(\frac{-2}{5}\right) \times\left(\frac{-4}{9}\right) \times(-3) \times\left(\frac{21}{-4}\right)$ is
1) $\frac{4}{5}$
2) $\frac{13}{5}$
3) $\frac{12}{5}$
4) $\frac{14}{5}$
9. A four digit number 'aabb' is a square number then the number is
1) 7744
2) 6633
3) 8855
4) 9944
10. A printer numbers the pages of a book starting with ' 1 ' and uses 3189 digits in all number of pages does the book have
1) 1084
2) 974
3) 537
4) 1074
11. The least possible integer of n for which $3 n-4,4 n-5,5 n-3$ are prime numbers []
1) 3
2) 5
3) 7
4) 2
12. For every positive integer ' n ' $1^{n}+8^{n}-3^{n}-6^{n}$ is always divisible by
1) 3
2) 7
3) 6
4) 10
13. A rectangle and a square has same perimeter of 40 m . The length of the diagonal of square is
1) 10 m
2) $15 \sqrt{2} \mathrm{~m}$
3) $20 \sqrt{2} \mathrm{~m}$
4) $10 \sqrt{2} \mathrm{~m}$
14. Among the following is a square of an odd number
1) 15876
2) 17161
3) 21904
4) 35722
15. The cube root of 3375 is
1) 25
2) 5
3) 35
4) 15
16. Among the following, would end with digit ' 1 '
1) 123^{2}
2) 77^{2}
3) 82^{2}
4) 109^{2}
17. The number of natural numbers lie between 11^{2} and 12^{2} are
1) 18
2) 19
3) 22
4) 23
18. What will be the number of zeroes in the square of the number 9000
1) 2
2) 3
3) 4
4) 6
19. The number of integers whose square is a factor of 2000 is
1) 3
2) 6
3) 10
4) 12
20. In how many ways two squares can be selected from a 8×8 chess board so that they are not in the same row or same column
1) 1500
2) 1506
3) 1568
4) 1586
21. Let n be a 3 digit number such that $\mathrm{n}=$ sum of the squares of the digits of ' n '. The number of such ' n ' is
1) 0
2) 1
3) 2
4) More than 2
22. The least number of numbers to be deleted from the set $\{1,2,3,4, \ldots .13,14,15\}$ so that the product of the numbers is a perfect square is
1) 1
2) 2
3) 3
4) 4
23. The number of primes less than 100 which have 7 as the unit digit
1) 6
2) 7
3) 8
4) 9
24. A student got x marks in a test. The student who got the first mark gets 48 more than this student who got x marks. If total marks of both the students is 110 . The highest mark secured is[]
1) 83
2) 92
3) 79
4) 100
25. If $\mathrm{n}=10^{10}-1$, the number of digit in n^{3} is
1) 30
2) 28
3) 32
4) 27
26. If one fifth of a number added to half of it is equal to 9 less than the number. Then the number is
1) 20
2) 28
3) 30
4) 32
27. The denominator of a fraction is 8 more than its numerator. If 5 is added to both numerator and denominator the fraction reduces to $\frac{1}{2}$ then the fraction is
1) $\frac{5}{13}$
2) $\frac{7}{15}$
3) $\frac{9}{17}$
4) $\frac{3}{11}$
28. How many kilograms of tea ₹ 80 per kilogram should be mixed with 25 kilograms of tea at ₹ 120 per kilogram to get a mixture of $₹ 105$ per kilogram
1) 10 kg
2) 15 kg
3) 20 kg
4) 18 kg
29. A, B, C together having ₹ 470 . B's money is equal to $\frac{3}{4}$ of A's money and C's money is equal to $\frac{4}{5}$ of B's money. The amount of money having A is
1) 200
2) 250
3) 150
4) 120
30. Two numbers are in the ratio $5: 3$. If they differ by 18 then the largest number is
1) 35
2) 25
3) 27
4) 45
31. Half of a herd of goats are grazing in the field and three fourths of the remaining are playing near by the rest 9 are drinking water. The number of goats in the field is
1) 42
2) 72
3) 62
4) 52
32. If $\frac{n}{2}-\frac{3 n}{4}+\frac{5 n}{6}=21$ then the value of n is
1) 46
2) 36
3) 56
4) 38
33. Mohan's mother is 20 years older him. Ten years ago, she was three times as old as Mohan was then the present age of Mohan is
1) 40 years
2) 20 years
3) 30 years
4) 10 years
34. Nandita changed $₹ 2$ into $5 \mathrm{p}, 20 \mathrm{p}, 50 \mathrm{p}$ coins. If the number of 5 p coins was double the number of 20 p coins and the 50 p coins were one - fifth the 20 p coins. The number of 20 p coins did he got?
1) 5
2) 1
3) 10
4) 15
[]
35. In the adjoining diagram all lengths are gives in centimeters. The area of trapezium ABCD is
1) $225 \mathrm{~cm}^{2}$
2) $196 \mathrm{~cm}^{2}$
3) $114 \mathrm{~cm}^{2}$
4) $70 \mathrm{~cm}^{2}$

36. If BC passes through the centre of the circle, then area of the shaded region in the given figure is
1) $\frac{a^{2}}{2}(3-x)$
2) $a^{2}\left(\frac{\pi}{2}-1\right)$
3) $2 a^{2}(\pi-1)$
4) $\frac{a^{2}}{2}\left(\frac{\pi}{2}-1\right)$

37. The circumference of the circle having the diameter 7 cm is
1) 22 cm
2) 32 cm
3) 11 cm
4) $\frac{22}{7} \mathrm{~cm}$
38. The area of shaded region in the given diagram is
1) $187.25 \mathrm{~cm}^{2}$
2) $167.25 \mathrm{~cm}^{2}$
3) $177.25 \mathrm{~cm}^{2}$
4) $157.25 \mathrm{~cm}^{2}$

39. The area of the triangle whose 3 sides are $11 \mathrm{~cm}, 13 \mathrm{~cm}, 20 \mathrm{~cm}$ is
1) $76 \mathrm{~cm}^{2}$
2) $66 \mathrm{~cm}^{2}$
3) $56 \mathrm{~cm}^{2}$
4) $46 \mathrm{~cm}^{2}$
40. A 25 m long pole is broken by wind from a certain height. If its top touches the ground at a distance of 5 m from its foot. The area of the triangle formed by the broken pole with ground is []
1) $30 \mathrm{~m}^{2}$
2) $35 \mathrm{~m}^{2}$
3) $28 \mathrm{~m}^{2}$
4) $40 \mathrm{~m}^{2}$
41. The surface area of a cube is $486 \mathrm{~cm}^{2}$. The side of the cube is
1) 18 cm
2) 12 cm
3) 9 cm
4) 15 cm
42. Bricks of sizes $20 \mathrm{~cm} \times 15 \mathrm{~cm} \times 8 \mathrm{~cm}$ are used to build a wall whose length breadth, and height are $15 \mathrm{~m}, 0.4 \mathrm{~m}$ and 1.2 m respectively. The number of bricks required is
1) 300
2) 400
3) 2000
4) 3000
43. An angle whose measure is more than 180° and less than 360° is called]
1) straight angle
2) reflex angle
3) complete angle
4) right angle
44. If the sum of three angles is 232°. The first of them is complement of second and the supplement of the third then the least angle is
1) 38°
2) 52°
3) 142°
4) 48°
45. In the following diagram three lines AB, CD and EFG are parallel. The value of ' y ' is []
1) 50°
2) 60°
3) 110°
4) 70°

46. If in an isosceles triangle $\triangle A B C, \mathrm{AB}=\mathrm{AC}$ and $\angle A=80^{\circ}$. The bisector of $\angle B$ and $\angle \mathrm{C}$ meet at D , then $\angle B D C=$
1) 80°
2) 120°
3) 130°
4) 160°

47. A 17 m long ladder leans against wall. If the foot of theladder is 8 m away from the foot of the wall. How far up the wall the ladder reaches
1) 17 m
2) 8 m
3) 25 m
4) 15 m
48. In the adjacent figure BA and BC are produced to meet CD and AD produced in E and F . Then $\angle \mathrm{AED}+\angle \mathrm{CFD}$ is
1) 80°
2) 50°
3) 40°
4) 160°

49. The angle between the diagonals of a kite is
1) 60°
2) 180°
3) 90°
4) 135°
50. In a square $\mathrm{ABCD}, \mathrm{E}$ is the midpoint of AB and length of FB is $\frac{1}{3}$ rd of BC . The area of $\triangle F B E$ is 108 units. The length of AC is
1) $24 \sqrt{2}$ units
2) $26 \sqrt{2}$ units
3) $12 \sqrt{2}$ units
4) $36 \sqrt{2}$ units

