INTSO
CLASS : VIII
Instructions:
$\Rightarrow \quad$ Fill the OMR sheet completely and carefully.
$\Rightarrow \quad$ Each question carries one mark and has only one correct answer. No negative marks
$\Rightarrow \quad$ The question paper contains 50 questions to be answered in 60 minutes.

1. If the average of $16,10 \& n$ is between $18 \& 21$. What is the greatest possible value of n
1) 24
2) 34
3) 32
4) 36
2. The $\frac{p}{q}$ form of $0.2 \overline{35}$ is
1) $\frac{233}{999}$
2) $\frac{233}{900}$
3) $\frac{233}{990}$
4) $\frac{233}{909}$
3. The length and breadth of a rectangular field are in the ratio 5:3. The area of the field is 1 hectare 3500 sq.mts., then its perimeter is
1) 240 cm
2) 150 cm
3) 480 cm
4) 180 cm
4. If $\sqrt{a}+\sqrt{b}=\frac{1}{\sqrt{3}-\sqrt{2}}$ then $\mathrm{a}+\mathrm{b}=$
1) 6
2) 1
3) 5
4) 12
5. If $\frac{\sqrt{7}+2 \sqrt{3}}{2 \sqrt{7}-\sqrt{5}}=\frac{C+\sqrt{P}+\sqrt{q}+\sqrt{r}}{23}(\mathrm{p}<\mathrm{q}<\mathrm{r})$ where $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are rational numbers then $\mathrm{q}+\mathrm{r}-\mathrm{p}$ is
1) 4
2) 1
3) 12
4) 35
6. If H.C.F of three numbers is 12 . If the numbers are in the ratio $1: 2: 3$ then the numbers are
1) $12,24,36$
2) $10,20,30$
3) $5,10,15$
4) $4,8,12$
[]
7. If P is a prime, $\mathrm{d}(\mathrm{N})$ means number of divisors of N . Then $d\left(d\left(d\left(p^{5}\right)\right)\right)$
1) 3
2) 2
3) 4
4) 1
8. The digit in the units place of $(45679)^{1239}$
1) 9
2) 6
3) 1
4) 2
9. There are n rational numbers between a and b where $a<b$ then difference ' d ' between any two consecutive rational numbers is
1) $\frac{a-b}{n+1}$
2) $\frac{b-a}{n-1}$
3) $\frac{b-a}{n+1}$
4) $\frac{a-b}{n-1}$
10. Given that $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are natural numbers and that $\mathrm{a}=\mathrm{bcd}, \mathrm{b}=\mathrm{acd}, \mathrm{d}=\mathrm{abc}$ then $(\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d})^{2}$ is
1) 16
2) 14
3) 12
4) 11 []
11. The remainder when $2010^{2011}+2011^{2011}$ is divided by 4021 is
1) 4000
2) 2010
3) 0
4) 2011
12. $(x+y)^{n}-\left(x^{n}+y^{n}\right)$ is always divisible by
1) x
2) $x y$
3) $x+y$
4) y
13. The factors of $x^{3}(y-z)+y^{3}(z-x)+z^{3}(x-y)$ are
1) $x-y$
2) $y-z$
3) $z-x$
4) all
14. $\mathrm{x}^{\mathrm{n+1}}-\mathrm{x}^{\mathrm{n}}-\mathrm{x}+1$ is exactly divisible by
1) $x-1$
2) $x+1$
3) $x+2$
4) both 1,2
15. 9 bus stops are equally spaced along a bus route the distance from first to third is 600 m . How far is it from the first stop to last stop ?
1) 800 m
2) 1600 m
3) 1800 m
4) 2400 m
16. What should be added to twice the rational number $\frac{-7}{3}$ to get $\frac{3}{7}$
1) 100
2) $\frac{107}{21}$
3) $\frac{103}{21}$
4) $\frac{98}{21}$
17. The perimeter of a rectangle is 13 cm and its width is $2 \frac{3}{4} \mathrm{~cm}$ then its length is
1) $3 \frac{2}{3} \mathrm{~cm}$
2) $3 \frac{4}{3} \mathrm{~cm}$
.3) $3 \frac{3}{4} \mathrm{~cm}$
3) $3 \frac{3}{5} \mathrm{~cm}$
18. The present age of Sahil's mother is 3 times the present age of sahil. After 5 years their ages will added to get 66 years. Then their present ages are
1) 16,40
2) 14,42
3) 18,54
4) 20,60
19. The number of 3 digit numbers which end in 7 and are divisible by 11 is
1) 2
2) 4
3) 6
4) 8
20. Present age of Anu and Raj are in the ratio $4: 5$. Eight years from now the ratio of their ages will be $5 ; 6$ then their present ages are
1) 32,40
2) 12,15
3) 28,35
4) 16,20
21. For any natural number $\mathrm{m}>1$ what is the Pythagorean triplet
4) $(M, M+1, M+2)$
22. Find the smallest multiple of 2352 which is a perfect square.
1) 2
2) 5
3) 3
4) 7
23. The smallest square number which is divisible by each of the numbers $6,9,15$
1) 400
2) 900
3) 8100
4) 3600
24. The square root of 9801 is
1) 89
2) 101
3) 99
4) 109
25. The square root of 17.64 is
1) 3.2
2) 4.24
3) 4.26
4) 4.2
26. If $\mathrm{a}=2012, \mathrm{~b}=-1005, \mathrm{c}=-1007$ then the value of $\frac{a^{4}}{b+c}+\frac{b^{4}}{c+a}+\frac{c^{4}}{a+b}+3 a b c=\quad[\quad]$
1) 2
2) 5
3) 4
4) 0
27. The sum of the cubes of the divisors of 12 is
1) 1728
2)2044
2) 2032
3) 1854
28. The highest power of 3 contained in 1000 !
1) 500
2) 333
3) 498
4) 524
29. Which of the following is a Ramanujam number
1) 1729
2) 144
3) 2394
4) 2459
30. If the volume of a cube is $729 \mathrm{~cm}^{3}$ then the side of he cube is
1) 8 cm
2) 13 cm
3) 9 cm
4) 17 cm
31. If a parallelogram and triangle are on the same base and same parallel lines then
1) Area of parallelogram = Area of triangle
2) Area of parallelogram $=2 \times$ Area of triangle
3) Area of parallelogram $=4$ Area of triangle
4) Area of triangle $=2 \times$ Area of parallelogram
32. If P is a point in the interior of a parallelogram ABCD then Area of $\triangle A P B+$ Area of $\triangle P C D$ is equal to
1) $\frac{1}{3} \times$ Area of a parallelogram
2) $\frac{1}{4} \times$ Area of parallelogram
3) $\frac{1}{2} \times$ Area of parallelogram
4) Area of parallelogram

33. If AD is the Median of a $\triangle A B C$ and EF is the median of $\triangle A B D$ then the area of $\triangle A E F$: area of $\triangle A B C$
1) $1 ; 2$
2) $1 ; 4$
3) $4 ; 1$
4) $3 ; 4$

34. The diagonals AC and BD of a trapezium ABCD with $A B \| C D$ intersect each other at ' O ' then area of $\triangle A O D$ is equal to
1) Area of $\triangle A O D$
2) Area of $\triangle B O C$
3) Area of $\triangle A D C$
4) Area of $\triangle A B C$

35. The figure formed by joining the midpoint of the Adjacent sides of a Rhombus is
1) Square
2) Parallelogran
3) Rhombus
4) Rectangle
36. The area of the triangle formed by the sides $8 \mathrm{~cm}, 11 \mathrm{~cm}, 13 \mathrm{~cm}$ is
1) $\sqrt{30} \mathrm{~cm}^{2}$
2) $4 \sqrt{30} \mathrm{~cm}^{2}$
3) $8 \sqrt{30} \mathrm{~cm}^{2}$
4) $2 \sqrt{30} \mathrm{~cm}^{2}$
37. Let $\square A B C D$ be a Quadrilateral with an in circle then which of the following is true []
1) $A B+A D=B C+C D$
2) $A B+C D=B C+A D$
3) $\mathrm{AD}+\mathrm{CD}=\mathrm{AB}+\mathrm{BC}$
4) $\mathrm{AC}+\mathrm{BD}=\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{AD}$

38. The area of a rhombus with length of diagonals 4 cm and 6 cm is
1) $24 \mathrm{~cm}^{2}$
2) $12 \mathrm{~cm}^{2}$
3) $8 \mathrm{~cm}^{2}$
4) $6 \mathrm{~cm}^{2}$
39. The area of the sector of a circle with radius 14 cm and corresponding arc making an angle 90° at centre of circle is
1) $154 \mathrm{~cm}^{2}$
2) $164 \mathrm{~cm}^{2}$
3) $134 \mathrm{~cm}^{2}$
4) $308 \mathrm{~cm}^{2}$
40. The area of an equilateral triangle formed on the diagonal of a square of side is 4 cm .
1) $12 \sqrt{3} \mathrm{~cm}^{2}$
2) $16 \sqrt{3} \mathrm{~cm}^{2}$
3) $8 \sqrt{3} \mathrm{~cm}^{2}$
4) $4 \sqrt{3} \mathrm{~cm}^{2}$
41. Sum of exterior angles of n - sided polygon is equal to
1) $(2 n-4) 180^{\circ}$
2) $(\mathrm{n}-2) 180^{\circ}$
3) 360°
4) $\left.n \times 90^{\circ}\right]$
42. The number of rectangles with integer sides and with perimeter 16 cm is
1) 8
2) 4
3) 3
4) 1
43. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the sides of $\triangle A B C$ and $\mathrm{c}^{2}>\mathrm{a}^{2}+\mathrm{b}^{2}$ then the triangle is
1) right angled triangle
2) Acute angled triangle
3) equilateral triangle
4) obtuse angled triangle
44. Number of diagonals of a '9' sided polygon is
1) 18
2) 36
3) 27
4) 45
45. If $\square A B C D$ is a cyclic Quadrilateral and $\angle A=100^{\circ}$ then $\angle B+\angle D=$
1) 200°
2) 100°
3) 180°
4) 120°
46. RICE is a Rhombus then x, y, z are
1) $5,12,13$
2) $5,17,7$
3) $12,5,7$
4) $13,12,5$

47. RENT is a rectangle and $\mathrm{OR}=2 \mathrm{x}+4, \mathrm{OT}=3 \mathrm{x}+1$ then the value of x is
1) 4
2) 5
3) 3
4) 2

48. Find the value of x in the given figure
1) 70°
2) 60°
3) 90°
4) 50°

49. If one of the angle in a Quadrilateral is greater than 180° then the Quadrilateral is
1) square
2) convex Quadrilateral
3) Rhombus
4) Concave Quadrilateral
50. In Given figure $\angle A C B=30^{\circ}$ then $\angle A O B=$?
1) 30°
2) 90°
3) 60°
4) 15°

