INTSO
CLASS : VII
Instructions:
$\Rightarrow \quad$ Fill the OMR sheet completely and carefully.
$\Rightarrow \quad$ Each question carries one mark and has only one correct answer. No negative marks.
$\Rightarrow \quad$ The question paper contains 50 questions to be answered in 60 minutes.

1. If $\frac{1}{4} \times \frac{2}{6} \times \frac{3}{8} \times \frac{4}{10} \times \frac{5}{12} \times \ldots \times \frac{31}{64}=\frac{1}{2^{x}}$, then the value of x is
1) 24
2) 12
3) 36
4) 46
2. Among the following fractions, which is the largest
1) $\frac{13}{16}$
2) $\frac{7}{8}$
3) $\frac{31}{40}$
d) $\frac{63}{80}$
3. If $x=\frac{2+\frac{1}{3 \frac{4}{5}}}{2+\frac{1}{3+\frac{1}{1+\frac{1}{4}}}}$, then the value of x is
1) 1
2) $\frac{3}{7}$
INT3) $\frac{1}{7}$
3) $\frac{8}{7}$
4. There exists positive integers x, y such that $(3 x+2 y)$ and $(4 x-3 y)$ are exactly divisible by
1) 11
2) 7
3) 23
4) 17
5. The G.C.D of $\frac{3}{16}, \frac{5}{12}, \frac{7}{18}$ is
1) $\frac{105}{48}$
2) $\frac{1}{4}$
3) $\frac{1}{48}$
4) $\frac{1}{144}$
6. What is missing figure given below $\frac{16}{7} \times \frac{16}{7}-\frac{\square}{7} \times \frac{9}{7}+\frac{9}{7} \times \frac{9}{7}=1$
1) 1
2) 7
3) 457
4) 32
7. Suppose $\mathrm{a}=\frac{2}{3} b, b=\frac{2}{3} \mathrm{c}$ and $\mathrm{c}=\frac{2}{3} d$. What would be the value of b as a fraction of $\mathrm{d}=$
1) $\frac{2}{3}$
2) $\frac{4}{3}$
3) $\frac{4}{9}$
4) $\frac{8}{27}$
[]
8. The greatest number which divides 261, 933 and 1381 leaving remainder 5 in each case is
1) 128
2) 64
3) 32
4) 16
9. If the L.C.M and H.C.F of two numbers are 1530 and 51. Then the number of such pairs are possible is
1) 2
2) 3
3) 4
4) 1
10. $2.8 \overline{768}$ expressed as a rational number is
1) $2 \frac{878}{999}$
2) $2 \frac{9}{10}$
3) $2 \frac{292}{333}$
4) $2 \frac{4394}{4995}$
11. The value of $0 . \overline{2}+0 . \overline{3}+0 . \overline{4}+0 . \overline{9}+0 . \overline{39}$ is
1) $0 . \overline{57}$
2) $1 \frac{20}{33}$
3) $2 \frac{1}{3}$
4) $2 \frac{13}{33}$
12. If $\mathrm{N}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\ldots \ldots .+\frac{1}{156}$, then the value of N is
1) $\frac{13}{12}$
2) $\frac{12}{13}$
3) $\frac{14}{13}$
4) $\frac{13}{14}$
13. If a man spends $\frac{5}{6}^{\text {th }}$ part of money and then earns $\frac{1}{2}$ part of the remaining money. Then the part of the money with him now is
1) $\frac{1}{3}$
2) $\frac{1}{2}$
3) $\frac{1}{6}$
4) $\frac{1}{4}$
14. The least fraction that must be added to $1 \frac{1}{3} \div 1 \frac{1}{2} \div 1 \frac{1}{9}$ to make the result an integer is []
1) $\frac{1}{5}$
2) $\frac{2}{5}$
3) $\frac{3}{5}$
4) $\frac{4}{5}$
15. Two supplementary angles are in the ratio $2: 7$. The largest angle is
1) 100°
2) 120°
3) 140°
4) 40°
16. In the following figure $\mathrm{AB} \| \mathrm{CD}$ the value of y is
1) 115°
2) 35°
3) 30°
4) 75°

17. In the adjoining diagram, $\mathrm{AB} \| \mathrm{CD}$. The value of x is
1) 70°
2) 60°
3) 50°
4) 110°

18. PSR is an isosceles triangle in which $\mathrm{PS}=\mathrm{PR} . \mathrm{SP}$ is produced to ' O ' such tht $\mathrm{PO}=\mathrm{SP}$, then $\angle S R O=$
1) 60°
2) 70°
3) 120°
4) 90°

19. In $\triangle A B C, \angle A C B=20^{\circ}$ and $\angle C A B=40^{\circ} \mathrm{AC}$ is extended to P such that $\mathrm{AP}=\mathrm{AC}+2 \mathrm{CB}$. The measure of $\angle A B P$ is
1) 100°
2) 90°
3) 110°
4) 80°
20. If $\mathrm{p} \mathrm{\mid l} \mathrm{q}$ in the figure shown, then $\mathrm{x}=$
1) 18°
2) 22°
3) 62°
4) 55°

21. If ray $P Q$ and $R S$ are parallel as given in figure, then $a+b+c=$
1) 90°
2) 180°
3) 270°
4) 360°

22. If P and Q are the mid points of sides CA and CB respectively of a $\triangle A B C$ right angled at C then $4\left(\mathrm{AQ}^{2}+\mathrm{BP}^{2}\right)=$
1) $4 \mathrm{AB}^{2}$
2) $2 A B^{2}$
3) $3 \mathrm{AB}^{2}$
4) $5 \mathrm{AB}^{2}$
23. If the sides of a right angled triangle are $x, x+1$ and $x-1$, then the hypotenuse is
1) 5
2) 4
3) 1
4) 0
24. If $\triangle A C B \cong \triangle D F E$, then $\angle F=$
1) 4°
2) 96°
3) 100°
4) 60°

25. The degree measure of each of the three angles of a triangle is an integer. Which of the following could not be the ratio of their measures?
1) $2: 3: 4$
2) $3: 4: 5$
3) $5: 6: 7$
4) $6: 7: 8$
26. $A B \perp B C, B D \perp A C$ and CE bisects $\angle C . \angle A=30^{\circ}$, then $\angle C E D=$
1) 30°
2) 60°
3) 45°
4) 65°

27. In $\triangle A B C$ medians BE and CF intersect at G . If the straight line AGD meets BC in D , in such a way that $\mathrm{GD}=1.5 \mathrm{~cm}$, then the length of AD is
1) 2.5 cm
2) 3 cm
3) 4 cm
4) 4.5 cm
28. In a $\triangle A B C$, if $\angle C=110^{\circ}$ which one of the following statement is correct?
1) $\mathrm{AB}^{2}>\mathrm{AC}^{2}+\mathrm{BC}^{2}$
2) $\mathrm{AB}^{2}<\mathrm{AC}^{2}+\mathrm{BC}^{2}$
3) $A C^{2}>A B^{2}+B C^{2}$
4) $\mathrm{BC}^{2}>\mathrm{AB}^{2}+\mathrm{AC}^{2}$
29. In the given figure $\mathrm{PQ} \| \mathrm{RS} . \angle R S F=40^{\circ}, \angle P Q F=35^{\circ}$ and $\angle Q F P=\mathrm{x}^{\circ}$, then the value of x is
1) 75°
2) 105°
3) 135°
4) 140°

30. If in $\triangle A B C, \mathrm{AB}=2, \mathrm{AC}=4$ and the median from A to BC is equal to BC . Then the length of BC
1) $\sqrt{7}$
2) $\sqrt{8}$
3) $\sqrt{10}$
4) $\sqrt{18}$
31. If $15,17,25$ are the lengths of two sides of a triangle and the altitude to the $3^{\text {rd }}$ side. Then the area of the triangle is
1) 210
2) 300
3) 180
4) 220
32. The sum of the interior angles of a polygon is 1620°. The number of sides of the polygon are
1) 9
2) 11
3) 15
4) 12
33. ABCD is a parallelogram. If P be a point on CD such that $\mathrm{AP}=\mathrm{AD}$, then the measure of $\angle P A B+\angle B C D$ is
1) 180°
2) 225°
3) 240°
4) 135°
34. In the given figure what is the value of x
1) $b-a-c$
2) $b-a+c$
3) $b+a-c$
4) $a+b+c$

35. The teacher tells the class that the highest marks obtained by a student in her class is twice the lowest marks plus 7. The highest score is 87 . What is the lowest score
1) 30
2) 35
3) 40
4) 38
36. If Laxmi's father is 49 years old. He is 4 years older than three times laxmi's age then the laxmi's age is
1) 15
2) 16
3) 20
4) 22
37. The sum of 3 times a number and 12 is 33 . Then the number is
1) 7
2) 8
3) 9
4) 12
38. The sum of 3 consecutive integers is 12 more than twice the smallest integer then the smallest number is
1) 8
2) 9
3) 7
4) 11
39. What is the greatest positive integer n which makes $n^{3}+100$ divisible by $n+1$ is
1) 890
2) 790
3) 900
4) 90
40. a, b, c, d are natural numbers such that $a=b c, b=c d, c=a d$ and $d=a b$ then $(a+b)(b+c)(c+d)$ $(d+a)$ is equal to
1) $(a+b+c+d)^{2}$
2) $(a+b)^{2}+(c+d)^{2}$
3) $(c+d)^{2}+(b+c)^{2}$
4) $(a+c)^{2}+(b+d)^{2}$
41. If $(x-7)^{2}-(x+8)^{2}=75$. The value of x is
1) 3
2) 1
3) -3
4) -1
42. The value of $a^{2} b\left(a^{3}-a+1\right)-a b\left(a^{4}-2 a^{2}+2 a\right)-b\left(a^{3}-a^{2}-1\right)$ is
1) $a b$
2) $a b^{2}$
3) a
4) b
43. If 2 n is an even number what are the odd numbers each side of it and the sum of two consecutive odd numbers is
1) 41,43
2) 57,59
3) 47,49
4) 31,33
44. The solid cube of sides $1 \mathrm{~cm}, 6 \mathrm{~cm}$ and 8 cm are melted together to form a new cube the total surface area of the cube so formed is
1) $486 \mathrm{~cm}^{2}$
2) $386 \mathrm{~cm}^{2}$
3) $286 \mathrm{~cm}^{2}$
4) $490 \mathrm{~cm}^{2}$
45. A rectangular water reservoir contains 18000 litres of water, if its base measures 4.5 m by 2.5 m . The depth of water in it is
1) 2.6 m
2) 3.6 m
3) 1.6 m
4) 1.4 m
46. Area of four walls of a room 10 m long, 5 m wide and 4 m height is
1) $120 \mathrm{~m}^{2}$
2) $140 \mathrm{~m}^{2}$
-3) $90 \mathrm{~m}^{2}$
3) $100 \mathrm{~m}^{2}$
47. Five cubes each of 5 cm are placed adjascent to each other. The surface area of resulting cuboid is
1) $550 \mathrm{~cm}^{2}$
2) $540 \mathrm{~cm}^{2}$
3) $440 \mathrm{~cm}^{2}$
4) $450 \mathrm{~cm}^{2}$
48. The size of a wooden block is 5 cm by 10 cm by 20 cm . The number of such blocks will be required to construct a solid wooden cube of minimum size
1) 10
2) 9
3) 8
4) 7
49. A rectangular card board sheet measures $48 \mathrm{~cm} \times 36 \mathrm{~cm}$ from each of its corners a square of 8 cm is cut off. An open box is made of the remaining sheet. The volume of box is
1) $5120 \mathrm{~cm}^{3}$
2) $6400 \mathrm{~cm}^{3}$
3) $8960 \mathrm{~cm}^{3}$
4) $2560 \mathrm{~cm}^{3}$
50. If the area of a circle and square are equal. Then the ratio of their perimeters is
1) $1: 1$
2) $2: \pi$
3) $\pi: 2$
4) $\sqrt{\pi}: 2$
