INTSO
CLASS : VII
Instructions:
$\Rightarrow \quad$ Fill the OMR sheet completely and carefully.
$\Rightarrow \quad$ Each question carries one mark and has only one correct answer. No negative marks.
$\Rightarrow \quad$ The question paper contains 50 questions to be answered in 60 minutes.

1. Arrange the following fractions in ascending order $\frac{5}{8}, \frac{5}{6}, \frac{7}{4}, \frac{3}{5}$
1) $\frac{3}{5}<\frac{5}{6}<\frac{5}{8}<\frac{7}{4}$
2) $\frac{5}{6}<\frac{3}{5}<\frac{5}{8}<\frac{7}{4}$
3) $\frac{5}{8}<\frac{5}{6}<\frac{3}{5}<\frac{7}{4}$
4) $\frac{3}{5}<\frac{5}{8}<\frac{5}{6}<\frac{7}{4}$
2. Simplifying the value of $4 \frac{5}{6}-2 \frac{3}{8}+3 \frac{7}{12}$
1) $\frac{24}{145}$
2) $\frac{145}{23}$
3) $\frac{145}{24}$
4) $\frac{144}{145}$
3. A rectangular sheet of paper is $12 \frac{1}{2} \mathrm{~cm}$ long and $10 \frac{2}{3} \mathrm{~cm}$ wide then its perimeter is []
1) 130 cm
2) $\frac{139}{3} \mathrm{~cm}$
3) $\frac{139}{2} \mathrm{~cm}$
4) 139 cm
4. Convert (169) ${ }_{10}$ to in base 7
1) $(332)_{7}$
2) $(462)_{7}$
INT 3)(331)
3) $(365)_{7}$
5. Shikha has read $\frac{3}{4}$ of a book consisting of 288 pages. How many pages are still left
1) 72
2) 85
3) 82
4) 92
6. If $24.125=24+\frac{A}{10}+\frac{B}{100}+\frac{C}{1000}$ then $\mathrm{A}+\mathrm{B}+\mathrm{C}=$
1) 3
2) 6
3) 13
4) 8
7. $\left(\frac{125}{8}\right)^{5} \times\left(\frac{125}{8}\right)^{n}=\left(\frac{5}{2}\right)^{18}$ then $\mathrm{n}=$
1) 3
2) 13
3) 1
4) 5
8. A number when divided by 899 gives a remainder 63 . The remainder when this number is divided by 29 is
1) 6
2) 7
3) 8
4) 5
9. $(-1)^{301}+(-1)^{302}+(-1)^{303}+\ldots \ldots .+(-1)^{400}=$
1) 1
2) 101
3) 100
4) 0
10. The decimal notation of 5 kg 5 g is
1) 5.5
2) 5.05
3) 5.005
4) 5.0005
11. An angle when added to one - sixth of its complementary angle equals to 40° then the angle is
1) 120°
2) 50°
3) 30°
4) 60°
12. The perimeter of a triangle is
1) greater than sum of its altitudes
2) less than the sum of its altitudes
3) equal to the sum of its altitudes
4) none of these
13. What value of x make $\overline{A B}$ parallel to $\overline{C D}$
1) $x=20^{\circ}$
2) $x=25^{\circ}$
3) $x=17^{\circ}$
4) $x=71^{\circ}$

14. Find the values of x and y from the given figure
1) $x=130^{\circ}, y=70^{\circ}$
2) $x=50^{\circ}, y=60^{\circ}$
3) $x=180^{\circ}, y=50^{\circ}$
4) $x=70^{\circ}, y=50^{\circ}$

15. From the given figure $\overline{A B} \| \overline{C D}$ and $\left\langle A P Q=50^{\circ}\right.$ and $\left\lfloor P R D=127^{\circ}\right.$ then the values of x and y
1) $x=127^{\circ}, y=50^{\circ}$
2) $x=50^{\circ}, y=77^{\circ}$
3) $x=63^{\circ}, y=130^{\circ}$
4) $x=77^{\circ}, y=177^{\circ}$

16. If $3^{a}+3^{b}=756,7^{a}+2^{c}=375$ and $5^{a}+3=128$ then the value of $a+b+c$ is
1) 12
2) 14
3) 18
4) 20
17. The length of the internal angular bisector of $\angle A$ of $\triangle A B C$ is
1) $\frac{2}{b+c} \sqrt{b c(s(s-a))}$
2) $\frac{2}{b-c} \sqrt{b c(s(s-b))}$
3) $\frac{2}{b+c} \sqrt{b c(s(s-b))}$
4) $\frac{2}{b-c} \sqrt{b c(s(s+b))}$
18. The height of an equilateral $\triangle A B C$ with side ' a ' units is
1) $\frac{1}{2} a$ units
2) $\sqrt{3} a$ units
3) $\frac{\sqrt{3}}{2} a$ units
4) $\frac{\sqrt{3}}{4} a^{2}$ units
19. The length of median of $\triangle A B C$ through vertex ' A ' is
1) $\frac{1}{2} \sqrt{2 b^{2}+2 c^{2}+a^{2}}$
2) $\sqrt{a^{2}-2 b^{2}-2 c^{2}}$
3) $\frac{1}{2} \sqrt{2 b^{2}+2 c^{2}-a^{2}}$
4) $\sqrt{b^{2}+c^{2}-a^{2}}$
20. In given figure $\overleftrightarrow{A D}, \overleftrightarrow{B E}$ and $\overleftrightarrow{C F}$ are three concurrent lines and ' O ' is point of concurrency and $\left\lfloor A O B=60^{\circ}, \underline{F O E}=30^{\circ}\right.$ then $\lfloor C O D=$
1) 30°
2) 90°
3) 60°
4) 120°

21. In the given figure the values of angles $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in order
1) $70^{\circ}, 110^{\circ}, 70^{\circ}$
2) $110^{\circ}, 70^{\circ}, 70^{\circ}$
3) $70^{\circ}, 70^{\circ}, 110^{\circ}$

4) $110^{\circ}, 110^{\circ}, 70^{\circ}$
22. In the adjacent figure given $\left\lfloor C O D=90^{\circ},\left\lfloor B O E=72^{\circ}\right.\right.$ and $\overline{A O B}$ is a straight line then the values of $\lfloor A O C,\lfloor B O D$ and $\lfloor A O E$
1) $36^{\circ}, 108^{\circ}, 54^{\circ}$
2) $36^{\circ}, 54^{\circ}, 108^{\circ}$
3) $45^{\circ}, 45^{\circ}, 108^{\circ}$
4) $30^{\circ}, 60^{\circ}, 108^{\circ}$
23. The supplementary angle of four third of a right angle is
1) 120°
2) 135°
3) 30°
4) 60°
24. If ' O ' is a point inside the triangle then $\mathrm{OA}+\mathrm{OB}+\mathrm{OC}$ is greater than
1) $A B+B C+C A$
2) $\frac{1}{2}(\mathrm{AB}+\mathrm{BC}+\mathrm{CA})$
3) $\frac{1}{4}(A B+B C+C A)$
4) $\frac{1}{3}(A B+B C+C A)$
25. Which of the following figures are not always similar
1) Two line segments
2) Two squares
3) Two triangles
4) Two circles
26. The hypotenuse ' c ' and one side ' a ' of a right angled triangle are consecutive positive integers, the square of the $3^{\text {rd }}$ side is
1) $\mathrm{c}-\mathrm{a}$
2) ca
3) $c+a$
4) $\frac{c}{a}$
27. In an equilateral triangle $\triangle A B C$ the side is BC is trisected at ' D ' then $\mathrm{AD}^{2}=$
1) $7 \mathrm{AB}^{2}$
2) $\frac{7}{9} A B^{2}$
3) $9 \mathrm{AB}^{2}$
4) $\frac{9}{7} A B^{2}$
28. In a $\triangle A B C, \angle A=60^{\circ}, \angle B=45^{\circ}, \angle C=75^{\circ}$ then which is the greatest side is
1) $A B$
2) BC
3) CA
4) we can't say
29. $\triangle A B C$ is a right angled isosceles triangle and right angle at ' C ' then
1) $A B^{2}=A C^{2}$
2) $A B^{2}=B C^{2}$
3) $A B^{2}=2 A C^{2}$
4) $\mathrm{AB}^{2}=3 \mathrm{AC}^{2}$

30. In an equilateral triangle $\triangle A B C \quad \mathrm{BC}$ is produced up to E then $\angle A C E=$?
1) 60°
2) 90°
3) 100°
4) 120°

31. Given $(\mathrm{a}-5)^{2}+(\mathrm{b}-\mathrm{c})^{2}+(\mathrm{c}-\mathrm{d})^{2}+(\mathrm{b}+\mathrm{c}+\mathrm{d}-9)^{2}=0$ then $(\mathrm{a}+\mathrm{b}+\mathrm{c})(\mathrm{b}+\mathrm{c}+\mathrm{d})$ is
1) 0
2) 11
3) 20
4) 99
32. If $\frac{x}{2}-1=\frac{x}{3}+4$ then $\mathrm{x}=$
1) 10
2) 30
3) 20
4) 15
33. If $\frac{3 x}{10}+\frac{2 x}{5}=\frac{7 x}{25}+\frac{29}{25}$ then $\mathrm{x}=$
1) $\frac{58}{21}$
2) $\frac{21}{58}$
3) $\frac{49}{21}$
4) $\frac{47}{22}$
34. Mona's father is thrice as old as Mona. After 12 years he will be just twice his daughter then their present ages are
1) 10,30
2) 12,36
3) 15,45
4) 13, 39
35. A black and white photograph is 70% black \& 30% white. It is enlarged 3 times. The percentage of white in the enlargement is
1) 90%
2) $66 \frac{2}{3} \%$
3) $33 \frac{1}{2} \%$
4) 30%
36. Two-thirds of a number is greater than one-third of the number by 5 , the number is
1) 10
2) 5
3) 15
4) 12
37. A student has to score 30% marks to get through in an examination. If he gets 30 marks \& fails by 30 marks the maximum marks set for the examination is
1) 90
2) 200
3) 250
4) 125
38. $2(2 n+5)=3(3 n-10)$ then $n=$
1) 5
2) 3
3) 7
4) 8
39. The length of a rectangle is 3 times its width and its perimeter is 56 m , then the length is
1) 7 m
2) 14 m
3) 21 m
4) 28 m
40. If supplementary angles are differed by 40°, the measure of the larger angle is \qquad
1) 70°
2) 80°
3) 110°
4) 100°
41. A cuboid has how many edges
1) 6
2) 12
3) 8
4) 10
42. The name of the figure as shown in the following
1) Triangular prism
2) triangular pyramid
3) equilateral triangle
4) cylinder

43. A sphere has how many vertices?
1) 1
2) 2
3) 3
4) 0
44. An Isosceles triangle has equal sides 7 cm long and the length of the $3^{\text {rd }}$ side is an integer. The number of such triangles is
1) 12
2) 10
3) 11
4) 13
45. Which type of dimensional figure is a cube ?
1) 1 dimensional
2) 2 dimensional
3) 3 dimensional
4) 4 dimensional
46. If F,E,V denote respectively the number of faces, edges and vertices of a polyhedron then Eulers formula is
1) $\mathrm{F}-\mathrm{V}+\mathrm{E}=2$
2) $F+V+E=2$
3) $F-E+V=2$
4) $\mathrm{E}-\mathrm{F}+\mathrm{V}=2$
47. In a polygon 6 angles are right angles and the remaining all angles are equal to 200° each. Then the number of sides of the polygon is
1) 12
2) 15
3) 16
4) 10
48. The difference between the circumference and radius of a circle is 37 cm . Then the area of the circle is
1) $111 \mathrm{~cm}^{2}$
2) $148 \mathrm{~cm}^{2}$
3) $154 \mathrm{~cm}^{2}$
4) $258 \mathrm{~cm}^{2}$
49. The area of circle is increased by $22 \mathrm{~cm}^{2}$ when its radius is increased by 1 cm the original radius of the circle is
1) 6 cm
2) 3 cm
3) 4 cm
4) 3.5 cm
50. The area of the square park whose perimeter is 320 m .
1) $3600 \mathrm{~m}^{2}$
2) $4900 \mathrm{~m}^{2}$
3) $6400 \mathrm{~m}^{2}$
4) $8100 \mathrm{~m}^{2}$
