

MATHEMATICS TALENT SEARCH OLYMPIAD(MTSO) 2015-2016
INTSO
CLASS : VI
STAGE - 1

Instructions:
$\Rightarrow \quad$ Fill the OMR sheet completely and carefully.
$\Rightarrow \quad$ Each question carries one mark and has only one correct answer. No negative marks
$\Rightarrow \quad$ The question paper contains 50 questions to be answered in 60 minutes.

1. If $\mathrm{a}=(-1) \times(-1) \times(-1)$ \qquad 100 times and $\mathrm{b}=(-1) \times(-1) \times(-1) \times$ \qquad 95 times, then $\mathrm{a}+\mathrm{b}=$
1) -1
2) -2
3) 0
4) 1
2. The value of $2^{2015}+2^{2015}+\ldots .+2^{2015}(256$ terms $)$ divided by 2^{2015} is
1) 256
2) 2^{73}
3) 2^{2015}
4) 2015
3. The modulus of an integer x is ' 9 ' then
1) $x=9$ only
2) $x=-9$ only
3) $x= \pm 9$
4) none of these
4. How many possible solutions for integers x and y such that $\frac{1}{x}+\frac{1}{y}=\frac{1}{2}$
1) 4
2) 3
3) 2
4) 5
5. Sugar is sold at RS $17 \frac{3}{4}$ per kg . Then the cost of $8 \frac{1}{2} \mathrm{~kg}$ of a sugar.
1) ₹ $150 \frac{7}{8}$
2)₹ $140 \frac{7}{8}$
2) ₹ $150 \frac{8}{7}$
3) ₹ $140 \frac{8}{7}$
6. If x is a natural number then $x+(x+1)+(\bar{x}+2)+(x+3)+\ldots \ldots+(x+2006)$ is always divisible by
1) 2006
2) 2007
3) 2004
4) 2005
7. A car runs 16 km using 1litre petrol. How much distance will it cover using $2 \frac{3}{4}$ litres of petrol
1) 46 km
2) 45 km
3) 44 km
4) 40 km
8. The product of two numbers is $20 \frac{5}{7}$. If one of the numbers is $6 \frac{2}{3}$ then the other number is
1) $3 \frac{4}{27}$
2) $3 \frac{3}{28}$
3) $4 \frac{3}{28}$
4) $4 \frac{3}{28}$
9. Which of the following fractions more than one third.
1) $\frac{23}{70}$
2) $\frac{205}{819}$
3) $\frac{26}{75}$
4) $\frac{118}{335}$
10. The perimeter of the triangle is 24 cm and the sides are $8 \mathrm{~cm}, 9 \mathrm{~cm}, \mathrm{xcm}$ then $\mathrm{x}=$
1) 6 cm
2) 5 cm
3) 7 cm
4) 8 cm
11. If the product of thedigits of a 4 digit number is 75 , the sum of the digits of the number is
1) 12
2) 13
3) 14
4) 15
12. In fig $\overline{A B} \| \overline{C D}$ and EF is a transversel intersecting AB and CD at P and Q respectively then the measure of $\angle D Q P i s$
1) 65°
2) 115°
3) 125°
4) 75°

13. The largest positive integer ' n ' for which $\mathrm{n}^{200}<6^{300}$ is
1) 12
2) 13
3) 17
4) 14
14. Each exterior angle in Equilateral triangle is ?
1) 120°
2) 80°
3) 60°
4) 55°
15. The sum of an angle and half of its complimentary angle is 75°
1) 40°
2) 50°
3) 60°
4) 80°
16. Two supplementary angles are in the ratio $3: 2$. The smaller angle Measure is
1) 108°
2) 81°
3) 72°
4) 68°
17. In the Adjoining figure $\mathrm{EF}=\mathrm{EC}$. Find the value of x .
1) 18°
2) 36°
3) 30°
4) 26°

18. The measure of an angle 360° is called
1) Reflex angle
2) Zero angle
3) Complete angle
4) Right angle
19. The angles of a linear pair are equal then the measure of each angle is
1) 30°
2) 45°
3) 60°
4) 90°
20. If all the diagonals of a regular hexagon are drawn, then number of points of intersection not counting the corners of hexagon is
1) 6
2) 13
3) 7
4) 12
21. In a triangle $\triangle A B C \angle B=75^{\circ}, \angle C=35^{\circ}$ then measure of $\angle A=$
1) 60°
2) 70°
3) 80°
4) 90°
22. What is the value of $\left(\frac{1}{a}+\frac{1}{b}\right)^{a}$.If $\mathrm{a}=2, \mathrm{~b}=3$
1) $\frac{36}{25}$
2) $\frac{25}{36}$
3) $\frac{9}{4}$
4) $\frac{8}{9}$
23. The value of n if $5^{n-2} \times 3^{2 n-3}=135$
1) 3
2) 4
3) 6
4) 5
24. If $25^{n-1}+100=5^{2 n-1}$ then the value of n is
1) 3
2) 4
3) 2
4) 5
25. If abc $=0$ then $\frac{\left\{\left(x^{a}\right)^{b}\right\}^{c}}{\left\{\left(x^{b}\right)^{c}\right\}^{a}}=$
1) 2
2) 3
3) 4
4) 1
26. If $x=1, y=-2, z=3$ then the value of $x^{3}+y^{3}+z^{3}-3 x y z$ is
1) 38
2) 40
3) 28
4) 35
27. If a and b are respectively the sum and product of coefficients of terms in the expression $x^{2}+y^{2}+z^{2}-x y-y z-z x$ then $a+2 b=$
1) 0
2) 2
3) -2
4) 3
28. What should be added to $x y+y z+z x$ to get $-x y-y z-z x$?
1) $-2 x y-2 y z-2 z x$
2) $-3 x y-y z-z x$
3) $-3 x y-3 y z-3 z x$
4) $2 x y+2 y z+2 z x$
29. If $16(3 x-5)-10(4 x-8)=40$ then
1) $x=4$
2) $x=3$
3) $x=5$
4) $x=7$
30. If $0.3 x+0.4=0.28 x+1.16$ then
1) $x=40$
2) $x=0.4$
3) $x=38$
4) $x=3.8$
31. The $25^{\text {th }}$ term in the sequence $(1,2),(2,3),(3,5),(4,7),(5,11),(6,13)-----$ is
1) $(25,47)$
2) $(25,49)$
3) $(25,37)$
4) $(25,97)$
32. The difference between two numbers is 7,6 times the smaller plus the larger is 77 then the numbers
1) 9,16
2) 10,17
3) 11,18
4) $12,19 \quad[\quad]$
33. The perimeter of a rectangular sheet is 100 cm . If the length is 35 cm then its breadth is [
1) 10 cm
2) 15 cm
3) 5 cm
4) 8 cm
34. The area of rectangular plot if one side of which is 48 m and length of its diagonal is 50 m
1) $672 \mathrm{M}^{2}$
2) $572 \mathrm{M}^{2}$
3) $500 \mathrm{M}^{2}$
4) $762 \mathrm{M}^{2} \quad[$
35. The base of a parallelogram is thrice its height. If the area is $867 \mathrm{~cm}^{2}$ then the base and height of the parallelogram are
1) 42 cm 14 cm
2) $45 \mathrm{~cm}, 15 \mathrm{~cm}$
3) $48 \mathrm{~cm}, 16 \mathrm{~cm}$
4) $51 \mathrm{~cm}, 17 \mathrm{~cm}$
36. In the Adjoining figure $\triangle A B C$ is rightangled at ' B ' and $\mathrm{CD}=\mathrm{CL}$ and $\mathrm{AM}=\mathrm{AD}$ then $\angle M D L=$
1) 45°
2) 55°
3) 65°
4) 60°

37. The area of an equilateral triangle having each side 4 cm
1) $2 \sqrt{3} \mathrm{~cm}^{2}$
2) $4 \sqrt{3} \mathrm{~cm}^{2}$
3) $3 \sqrt{3} \mathrm{~cm}^{2}$
4) $6 \sqrt{3} \mathrm{~cm}^{2}$
38. A piece of wire of length 12 cm is bent to form a square. The area of square is
1) $36 \mathrm{~cm}^{2}$
2) $144 \mathrm{~cm}^{2}$
3) $9 \mathrm{~cm}^{2}$
4) $12 \mathrm{~cm}^{2}$
39. The diameter of a circle whose circumference is 132 cm
1) 32 cm
2) 22 cm
3) $\frac{22}{7} \mathrm{~cm}$
4) 42 cm
40. The diameter of the wheel of a car is 77 cm then how many revolutions will it make to travel 121 k.m.
1) 2000 revolutions
2) 3000 revolutions
3) 5000 revolutions
4) 4000 revolutions
41. If A is the area and C is the circumference of a circle, then its radius is
1) $\frac{A}{C}$
2) $\frac{2 A}{C}$
3) $\frac{3 A}{C}$
4) $\frac{4 A}{C}$
42. $\overline{21 y 5}$ is a multiple of 9 where Y is a digit then the value of y
1) 2
2) 1
3) 10
4) 19
43. Three different integers have a sum ' 1 ' and product ' 36 ' then
1) Certainly all of them positive
2) Only one is negative
3) Exactly two of them are negative
4) All the three are negative
44. If $\overline{a b}, \overline{b a}$ are two digited numbers then $\overline{a b}+\overline{b a}$ is always divisible by
1) 9
2) 8
3) 7
4) 11
45. Nandita got an average mark 85 in her first 8 tests and average 81 for the first 9 tests then her mark in $9^{\text {th }}$ test is
1) 45
2) 40
3) 49
4) 50
46. The last digit in the finite decimal representation of the number $\left(\frac{1}{5}\right)^{2004}$ is
1) 2
2) 4
3) 6
4) 8
47. If ratio of two natural numbers $7: 9$. If each number is decreased by 2 the ratio becomes $3: 4$. The sum of two numbers is
1) 23
2) 32
3) 48
4) 12
48. What is the first digit of the smallest number whose sum of the digits is 2007 ?
1) 9
2) 8
3) 3
4) 2
49. If 981547 is divided by 5 then the remainder is
1) 4
2) 3
3) 0
4) 2
50. The digits of the year 2000 add up to 2 .In how many years has this happened since the year ' 1 ' till this year 2004
1) 3
2) 6
3) 9
4) 10
