	ITSO SS:VI		STAGE - 1	TIME Max. Marks	: 60 r : 50	nin.
Inst		es one mark and l	refully. has only one correct ans ions to be answered in 6		rks	
1.	If $a = (-1) \times (-1) \times (-1)$ then $a + b = (-1) - 1$	1) 100 times 2) -2	s and $b = (-1) \times (-1) \times (-3) 0$	-1) × 95 times, 4) 1	[]
2.	,	,	terms) divided by 2^{2015} is 3) 2^{2015}	<i>,</i>	[]
3.	The modulus of an int 1) $x = 9$ only	eger x is '9' then 2) $x = -9$ only	$3) x = \pm 9$	4) none of th	[nese]
4.			ers x and y such that $\frac{1}{x}$ +	2	[]
5.	1) 4 Sugar is sold at RS 17	2) 3 $7\frac{3}{4}$ per kg. Then	3) 2 the cost of $8\frac{1}{2}$ kg of a s	4) 5 ugar.	[]
	1) ₹ 150 ⁷ / ₈	2)₹ 140 ⁷ / ₈	3) ₹ 150 $\frac{8}{7}$	4) ₹ 140 <mark>8</mark> 7		
6.	If x is a natural number divisible by 1) 2006	er then $x + (x + 2) 2007$	1) + (x + 2) + (x + 3) + 3) 2004	+ (x + 200 4) 2005	6) is al [waj
7.			ow much distance will it	ŕ	s of pet	trol
	1) 46 km	2) 45 km	3) 44 km	4) 40 km	[]
8.	The product of two nu	The second seco	Fone of the numbers is 6	$\frac{2}{3}$ then the other num	nber is	5
	1) $3\frac{4}{27}$	2) $3\frac{3}{28}$	3) $4\frac{3}{28}$	4) $4\frac{3}{28}$	[]
9.	Which of the followin	g fractions more	than one third.		[]
	1) $\frac{23}{70}$	2) $\frac{205}{819}$	3) $\frac{26}{75}$	4) $\frac{118}{335}$		
10.	The perimeter of the t	riangle is 24cm a 2) 5cm	nd the sides are 8cm, 9cm 3) 7cm	n, xcm then $x =$	[]

_							
11.	If the product of the digits of a 4 digit number is 75, the sum of the digits of the number is						
	1) 12	2) 13	3) 14	4) 15	[]	
12.	In fig $\overline{AB} \parallel \overline{CD}$ and EF is a transversel intersecting AB and CD at P and Q respectively then						
	measure of $\angle DQPis$		Ę		[]	
	1) 65°		$A \xrightarrow{5x-10^{\circ}} B$				
	2) 115°		$3x-10^{\circ}$				
	3) 125°		$C \qquad Q \qquad D$				
	4) 75°		₹ F				
13.	The largest positive in 1) 12	teger 'n' for which n ²⁰⁰ < 2) 13	6 ³⁰⁰ is 3) 17	4) 14	[]	
14.	Each exterior angle in 1) 120°	Equilateral triangle is ? 2) 80°	3) 60°	4) 55°	[]	
15.	The sum of an angle at $1) 40^{\circ}$	nd half of its compliment 2) 50°	tary angle is 75° 3) 60°	4) 80°	[]	
16.	Two supplementary an 1) 108°	gles are in the ratio 3 : 2 2) 81°	. The smaller angle Me 3) 72°	asure is 4) 68°	[]	
17.	In the Adjoining figure 1)18° 2) 36° 3) 30° 4) 26°	e EF = EC . Find the val	A x° x° x°		[]	
18.	The measure of an ang 1) Reflex angle	le 360° is called 2) Zero angle	B F C 3) Complete angle	4) Right angle	[e]	
19.	The angles of a linear 1) 30°	pair are equal then the m 2) 45°	easure of each angle is $3) 60^{\circ}$	4) 90°	[]	
20.	If all the diagonals of counting the corners o	a regular hexagon are of hexagon is	drawn, then number of	points of inters	section [not]	
	1) 6	2) 13	3) 7	4) 12			
21.	In a triangle $\triangle ABC \ge$ 1) 60°	$B = 75^{\circ}, \angle C = 35^{\circ}$ then 2) 70°	measure of $\angle A = 3) 80^{\circ}$	4) 90°	[]	
22.	What is the value of ($\left(\frac{1}{a} + \frac{1}{b}\right)^{a}$. If a = 2, b = 3			[]	
	1) $\frac{36}{25}$	2) $\frac{25}{36}$	3) $\frac{9}{4}$	4) $\frac{8}{9}$			
23.	The value of n if 5^{n-2} 1) 3	$x^{3^{2n-3}} = 135$ 2) 4	3) 6	4) 5	[]	
24.	If $25^{n-1}+100 = 5^{2n-1}$ the 1) 3	en the value of n is 2) 4	3) 2	4) 5	[]	

	$\left\{\left(x^{a}\right)^{b}\right\}$	$\left\{ \right\} ^{c}$				
25.	If abc = 0 then $\frac{\left\{\left(x^{a}\right)^{b}\right\}}{\left\{\left(x^{b}\right)^{c}\right\}}$ 1) 2	$\left \frac{1}{a}\right ^{a} =$			[]
	1) 2	2) 3	3) 4	4) 1		
26.	If x = 1, y = -2, z = 3 1) 38	then the value of $x^3 + y^3$ 2) 40	+ z ³ - 3xyz is 3) 28	4) 35	[]
27.	If a and b are respective $x^2 + y^2 + z^2 - xy - yz - 1$	• •	t of coefficients of terms 3) -2	in the expression 4) 3	on []
28.		to $xy + yz + zx$ to get – 2) $-3xy - yz - zx$	-xy - yz - zx ? 3) $-3xy - 3yz - 3zx$	4) 2xy + 2yz	[+ 2zx]
29.	If $16(3x-5) - 10(4x-8)$ 1) x = 4) = 40 then 2) x = 3	3) x = 5	4) x = 7	[]
30.	If $0.3x + 0.4 = 0.28x + 1$ 1) x = 40	1.16 then 2) $x = 0.4$	3) x = 38	4) x = 3.8	[]
31.	The 25 th term in the se	quence (1, 2), (2, 3), (3,	5), (4, 7), (5, 11), (6, 13) is	[]
	1) (25,47)	2) (25,49)	3) (25,37)	4) (25,97)		
32.	The difference betwee 1) 9,16	n two numbers is 7,6 tim 2) 10,17	es the smaller plus the lar 3) 11,18	rger is 77 then th 4) 12,19	ne num [nbers]
33.	The perimeter of a rec 1) 10cm	tangular sheet is 100cm 2) 15cm	. If the length is 35cm th 3) 5cm	nen its breadth i 4) 8cm	is []
34.	The area of rectangula 1) 672 M ²	r plot if one side of which 2) 572M ²	ch is 48m and length of i 3) 500M ²	ts diagonal is 5 4) 762M ²	0m []
35.		ogram is thrice its height 2) 45cm, 15cm	. If the area is 867 cm ² th 3) 48cm, 16cm	hen the base an 4) 51cm,17cr	[ht of]
36.	In the Adjoining figure	e $\triangle ABC$ is rightangled	at 'B' and $CD = CL$ and L	AM = AD then	∠ML	DL =
	1) 45°		A N		[]
	2) 55°					
	3) 65°		M 90°			
	4) 60°		$\begin{array}{c c} \square & D \\ \hline D & D \\ \hline B & L \\ \hline \end{array} \\ \hline \end{array} \\ C$			
37.	The area of an equilate	eral triangle having each	n side 4cm		[]
	1) $2\sqrt{3}cm^2$	2) $4\sqrt{3}cm^2$	3) $3\sqrt{3}cm^2$	4) $6\sqrt{3}cm^{2}$		
38.	A piece of wire of leng 1) 36 cm ²	gth 12cm is bent to form 2) 144 cm ²	a square. The area of sc 3) 9 cm ²	(uare is 4) 12 cm ²	[]
39.	The diameter of a circl	le whose circumference	is 132cm		[]
	1) 32 cm	2) 22 cm	3) $\frac{22}{7}$ cm	4) 42 cm		

40.	The diameter of the wheel of a car is 77 cm then how many revolutions will it make to t 121 k.m. [1) 2000 revolutions 2) 3000 revolutions 3) 5000 revolutions 4) 4000 revolutions]
41.	1) 2000 revolutions	2) 3000 revolutions	3) 5000 revolutions a circle, then its radius is	<i>,</i>	r	; 1
41.	1) $\frac{A}{C}$	2) $\frac{2A}{C}$	3) $\frac{3A}{C}$	(4) $\frac{4A}{C}$	L]
42.	$\overline{21y5}$ is a multiple of 1) 2	9 where Y is a digit ther 2) 1	the value of y 3) 10	4) 19	[]
43.	, ,	rs have a sum '1' and pro n positive	,	'e	[]
44.	If \overline{ab} , \overline{ba} are two digital 1) 9	ted numbers then $\overline{ab} + \overline{b}$ 2) 8	\overline{a} is always divisible by 3) 7	4) 11	[]
45.		,	ests and average 81 for the 3) 49	<i>,</i>	en her [mark]
46.	The last digit in the fi	nite decimal representat	ion of the number $\left(\frac{1}{5}\right)^{20}$	is	[]
47.	 1) 2 If ratio of two natural new sum of two numbers in the numbers in the numbers in the numbers in the number of two numbers in two numbers in		 3) 6 amber is decreased by 2 th 3) 48 	4) 8 he ratio becom 4) 12	ues 3 : 4 [. The]
48.			whose sum of the digits i 3) 3	is 2007? 4) 2	[]
49.		y 5 then the remainder i 2) 3		4) 2	[]
50.	The digits of the year 2000 add up to 2 .In how many years has this happened since the year '1 this year 2004					
	1) 3	2) 6	3) 9	4) 10	L	1