	ITSO SS · V	STAG	ARCH OLYMPIAD E - 1	TIME Mor. Morka	: 60 r	nin.
	ASS : X			Max. Marks	: 50	
Insti	Each question carri	completely and carefully es one mark and has on contains 50 questions to	ly one correct answer.	•	arks.	
1.	The exponent of 2 in 1) 4	the prime factorisation (2) 5	of 144 is 3) 6	4) 3	[]
2.	If p ₁ and p ₂ are two or 1) an even number 3) an odd prime numb	ld prime numbers such per	that $p_1 > p_2$, then $p_1^2 - 2$) an odd number 4) a prime number	p_2^2 is	[]
3.	If $\frac{x}{2} = \frac{y}{3}$, then $\left(\frac{4}{5} + \frac{y}{5}\right)$	$\left(\frac{y-x}{y+x}\right)$ equals to	·*		[]
	1) $\frac{3}{5}$	2) $\frac{4}{5}$	3) 1 *	4) $\frac{6}{5}$		
4.	If n is a positive integ	er, then $\sqrt[n]{9} \times \sqrt[n]{9^2} \times \sqrt[n]{9^3}$	$5 \times \dots \times \sqrt[n]{9^n}$ is equ	als to	[]
	1) $9^{n(n+1)}$	2) $\sqrt{9^{n+1}}$	3) 3 ⁿ⁺¹	4) $\sqrt{81^{n(n+1)}}$		
5.	If $3a = 4b = 6c$ and $a = 4b = 6c$	$+ b + c = 27\sqrt{29}$, then	$\sqrt{a^2+b^2+c^2}$ is		[]
	1) 3\sqrt{29}	2) 81 INT	3) 87	4) 97		
6.	If $x = 7 + 4\sqrt{3}$, then	the value of $x^2 + \frac{1}{x^2}$ is			[]
	1) 193	2) 194	3) 195	4) 196		
7.	If L.C.M of x and 18 1) 1	is 36 and H.C.F of x and 2) 2	d 18 is 2, then the valu 3) 3	ue of x is 4) 4	[]
8.	then $(a + b) (b + c) ($	numbers such that $a = b$ c + d) ($a + d$) is equals 2) ($a + b$) ² + ($c + d$) ²	to		[+ (b +] d) ²
9.	What is the greatest p 1) 120	ositive integer 'n' which 2) 290	makes n ³ + 100 is div 3) 890	tisible by n + 10 4) 790]]
10.	If the average of 20 d these 20 numbers can 1) 210	ifferent positive integer be 2) 200	s is 20, then the great 3) 190	est possible nur 4) 180	mber a	mor]
11.		s less than 100 which ha	,	,	[]

12.	The years of 20^{th} century and 21^{th} by the product of the 4 digits of 1) 7 2) 8	the year is		years which are 4) 10	e divis [ible]
12	, , , , , , , , , , , , , , , , , , , ,	,		,		
13.	If a, b, c, d, e are five integers su 5024. Then the value of $(d - a)$		+ c = c + d = d + e = 2	2012, a + b + c	+ a +	e =
	1) 8 2) 12) 10	4)4	L]
14	, , ,		10	.,.	г	1
14.	In a polynomial in x, the indice 1) integers 3) non negative integers	2)) positive integers) real numbers		L]
15.	If $a + b + c = 0$, then $\left(\frac{a^2}{bc} + \frac{b^2}{ca}\right)$	$+\frac{c^2}{ab}\bigg)$ is			[]
	1) 1 2) 0	3)) – 1	4) 3		
16.	Consider the equation $x^2 + y^2 =$	= 2007 given x is ;	a real number and v i	s a natural nur	nber	The
	number of solutions of the equa				[]
	1) 0 2) 2006	3)) 88	4) 44		
17.	If a, b are natural numbers such	that $a + b = 2008$.	, then $(-1)^{a} + (-1)^{b}$ is		ſ]
	1) 1 2) - 1			4) 2 (or) – 2	L	-
18.	If $a^2 - b^2 = 2011$ where a, b are 1) - 101 2) - 200			f (a + b) is 4) – 1	[]
19.	If $\frac{x}{y} + \frac{y}{x} = -1$ where $x \neq 0, y \neq 0$	0, then the value of	of $x^3 - y^3$ is		[]
	1) 1 2) – 1	3)	0 0	4) $\frac{1}{2}$		
20.	If x + y + z = 9 and xy + yz + z 1) 108 2) 207				[]
21.	If $(3x - 1)^7 = a_7 x^7 + a_6 x^6 + a_5 x^5 - to$				is eq	uals 1
	1) 0 2) 1	3)) 128	4) 64	L	L
22.	If $x + 2$ and $x - 1$ are the factors 1) 5 and -3 2) 17 ar			M and n are res 4) 23 and – 19	-	vely]
23.	Two points having same absciss 1) x - axis 3) a line parallel to x - axis	2)	dinates lie on) y - axis) a line parallel to Y - a	axis	[]
24.	The area of the triangle formed1) 16 squnits2) 8 squ	• •		, 4) is 4) 6 sq units	[]
25.	The ratio in which the line segments $1) - a_1 : a_2$ 2) $a_1 : a_3$			\mathbf{b}_2) is divided b 4) - \mathbf{b}_1 : \mathbf{b}_2	уҮ-а [axis]
	1 2 1	_	. 2	1 2	F	-
26.	The circum centre of the triangl 1) $(3, 3)$ 2) $(3, -1)$			and (7, – 6) is 4) (4, 2)	s]

27.	The vertices of $\triangle ABC$ are A(4, 6) B(1, 5) and C(7, 2). A line is drawn to intersect sides AB and					
	AC at D and E respectively such that $\frac{AD}{AB} = \frac{AE}{AC} = \frac{1}{4}$. The ratio of area $\triangle ADE$ to area of $\triangle ABC$					
	is		~ .	Г	1	
	1) 1 : 8	2) 16 : 1	3) 1 : 16	4) 8 : 1	L	
28.	If the mid point of the of k is	line joining (3, 4) and (k, 7) is (x, y) and 3x +	2y + 1 = 0, then the	value	
	1) 14	2) – 14	3) – 11	4) 15	L	
29.	If the line segment joi	ning the points $(3, -4)$	and (1, 2) is trisected a	at P(a, -2) and $Q\left(\frac{1}{2}\right)$	$\left \frac{5}{3},b\right ,$	
	then the values of a an	d b are		[]	
	1) $\frac{2}{3}, \frac{8}{3}$	2) $\frac{7}{3}$,0	3) $\frac{1}{3}$,1	4) $\frac{2}{3}, \frac{1}{3}$		
30.	Two adjascent vertices 1) (5, 5) (2, 9)		and (-2, 6), then the oth 3) (2, 5) (9, 5)	her vertices are [4) (5, 5), (9, 2)]	
31.	The area of the para $4y - 3x - 3a = 0$, and 3		the lines $4y - 3x - a$	= 0, 3y - 4x + a	u = 0,]	
	1) a ² sq units	2) 9a ² sq units	3) $\frac{2}{7}$ a ² sq units	4) $\frac{7}{2}$ a ² sq units		
32.	If the discriminant of t	the equation $6x^2 - bx + 2$	2 = 0 is '1' then the value	e of 'b' is []	
	1) 7	2) – 7	3) ±7	4) $\pm \sqrt{7}$		
33.	The value of c for whi	ch the equation $ax^2 + 2b$	bx + c = 0 has equal root	ts is []	
	1) $\frac{b^2}{a}$	2) $\frac{b^2}{4a}$ INT	$3) \frac{a^2}{b}$	$4) \frac{a^2}{4b}$		
34.	If the roots of $px^2 + qx^2$ 1) 1	x + 2 = 0 are reciprocals 2) 0	of each other then $P = 3) 2$	[4) 3]	
35.	If the roots of the equa	ation $3ax^2 + 2bx + c = 0$	are in the ratio 2 : 3, the]	
	1) $25\frac{a}{c}$	2) 25ac	3) $\frac{-25}{7}ac$	4) 49ac		
36.	If the ratio of the roots	of $ax^2 + 2bx + c$ is same	e as the ratio of the roots	of $px^2 + 2qx + r = 0$, then	
	1) $\frac{b^2}{ac} = \frac{p^2}{qr}$	2) $\frac{b}{ac} = \frac{q}{pr}$	3) $\frac{b^2}{ac} = \frac{q^2}{pr}$	4) $\frac{b}{ac} = \frac{q^2}{pr}$ []	
37.	If α, β are the roots	of $x^2 + px + 1 = 0$ and	nd γ, δ are the roots o	of $x^2 + qx + 1 = 0$.	, then	
	$(\alpha - \gamma)(\beta - \gamma)(\alpha + \delta)$	()		[]	
	1) $p^2 - q^2$	2) $p^2 + q^2$	3) $q^2 - p^2$	$(4) - q^2 - p^2$		

38.	If α, β are the roots o	$f ax^2 + 2bx + c = 0$, then	$\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ is		[]		
	$1) \ \frac{2(2b^2 - ac)}{ac}$	$2) \ \frac{4(b^2 - ac)}{ac}$	$3) \ \frac{4(b^2 - ac)}{a^2c^2}$	$4) \frac{4(b^2 - ac)}{a}$	-			
39.	If $ax^2 + bx + c = 0$ is s 1) $b = 0, c = 0$	tatisfied by every value 2) $c = 0$	of x, then 3) $b = 0$	4) a = b = c =] 0 :]		
40.	If α, β are the roots o	$f 4x^2 + 3x + 7 = 0$, then	the value of $\frac{1}{\beta} + \frac{1}{\alpha}$ is		[]		
	1) $\frac{3}{7}$	2) $\frac{-3}{7}$	3) $\frac{4}{7}$	4) $\frac{-4}{7}$				
41.	$\sin \alpha$ and $\cos \alpha$ are the 1) $a^2 - 2ac$	he roots of the equation 2) $a^2 + 2ac$	$ax^{2} + bx + c = 0$, then b 3) $a^{2} - ac$	$a^{2} =$ 4) $a^{2} + ac$	[]		
42.	In $\triangle ABC$, AB = AC, 1 1) 7cm	D is the mid point of BC 2) 4cm	C, if AB = 5cm, BC = 6c 3) 5cm	m, then AD = 4) 6cm	[]		
43.	Among the following 1) 5cm, 7cm, 13cm	can be the measure of si 2) 6cm, 7cm, 13cm	ides of a triangle. 3) 9cm, 12cm, 13cm	4) 5cm, 9cm,	[4cm]		
44.	In the given figure Pg 1) 40° 3) 30°	$\frac{QR}{2} =$ 2) 50° 4) 70°	75° P 145° Q R		[]		
45.	In $\triangle ABC \mid \underline{A} = \frac{ \underline{B} }{2} = \frac{ \underline{A} }{2}$	$\frac{2}{2}$, then the measure of	<u>A</u> is		[]		
	1) 60°	2) 30°	3) 40°	4) 36°				
46.	From a point 'O' with in an equilateral triangle perpendiculars are drawn to the three s 7 and 9 cms in length the perimeter of the triangle is					re 5,]		
	1) $42\sqrt{3}cm$	2) $36\sqrt{3}cm$	3) $126\sqrt{3}cm$	4) $54\sqrt{3}cm$				
47.	The perimeter of an isosceles rightangled triangle is 2012. Its area is]		
	1) $2012(3-\sqrt{2})$	2) $(1006)^2 (3 - \sqrt{2})$	3) (2012) ²	4) $(1006)^2$				
48.	If TP and TQ are two	tangents to a circle with	centre 'O' so that POQ	$= 120^\circ$, then	PTQ	is		
	1) 90°	2) 80°	3) 70°	4) 60°	[]		
49.	the triangle formed is	test and lowest angles of			[then]		
50	1) scalene	2) isosceles	3) right angled	4) an equilate		and		
50.	ABCD is a cyclic quantum $ ADC = 140^\circ$, then $ E $	adrilateral such that AB $AC =$	is a unameter of the cl		nng ۱t ۲] and		
	$\frac{ ADC }{130^{\circ}} = 140^{\circ}, \text{ then } \underline{L} $	$\frac{3AC}{2}$ = 2) 50°	3) 40°	4) 60°	L	1		