SNTSO
CLASS : \mathbf{X}
Instructions:
$\Rightarrow \quad$ Fill the OMR sheet completely and carefully.
$\Rightarrow \quad$ Each question carries one mark and has only one correct answer. No negative marks.
$\Rightarrow \quad$ The question paper contains 50 questions to be answered in 60 minutes.

1. The exponent of 2 in the prime factorisation of 144 is
1) 4
2) 5
3) 6
4) 3
2. If p_{1} and p_{2} are two odd prime numbers such that $p_{1}>p_{2}$, then $p_{1}{ }^{2}-p_{2}{ }^{2}$ is
1) an even number
2) an odd number
3) an odd prime number
4) a prime number
3. If $\frac{x}{2}=\frac{y}{3}$, then $\left(\frac{4}{5}+\frac{y-x}{y+x}\right)$ equals to
1) $\frac{3}{5}$
2) $\frac{4}{5}$
3) 1
4) $\frac{6}{5}$
4. If n is a positive integer, then $\sqrt[n]{9} \times \sqrt[n]{9^{2}} \times \sqrt[n]{9^{3}} \times \ldots \ldots \ldots . \times \sqrt[n]{9^{n}}$ is equals to
1) $9^{n(n+1)}$
2) $\sqrt{9^{n+1}}$
3) 3^{n+1}
4) $\sqrt{81^{n(n+1)}}$
5. If $3 \mathrm{a}=4 \mathrm{~b}=6 \mathrm{c}$ and $\mathrm{a}+\mathrm{b}+\mathrm{c}=27 \sqrt{29}$, then $\sqrt{a^{2}+b^{2}+c^{2}}$ is
1) $3 \sqrt{29}$
2) 81
3) 87
4) 97
6. If $x=7+4 \sqrt{3}$, then the value of $x^{2}+\frac{1}{x^{2}}$ is
1) 193
2) 194
3) 195
4) 196
7. If L.C.M of x and 18 is 36 and H.C.F of x and 18 is 2 , then the value of x is
1) 1
2) 2
3) 3
4) 4
8. If $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are natural numbers such that $\mathrm{a}=\mathrm{bc}, \mathrm{b}=\mathrm{cd}, \mathrm{c}=\mathrm{da}$ and $\mathrm{d}=\mathrm{ab}$, then $(a+b)(b+c)(c+d)(a+d)$ is equals to
1) $(a+b+c+d)^{2}$
2) $(a+b)^{2}+(c+d)^{2}$
3) $(a+b)^{2}+(b+c)^{2}$
4) $(a+c)^{2}+(b+d)^{2}$
9. What is the greatest positive integer ' n ' which makes $\mathrm{n}^{3}+100$ is divisible by $\mathrm{n}+10 \quad$ []
1) 120
2) 290
3) 890
4) 790
10. If the average of 20 different positive integers is 20 , then the greatest possible number among these 20 numbers can be
1) 210
2) 200
3) 190
4) 180
11. The number of primes less than 100 which have 7 as the unit digit is
1) 6
2) 7
3) 8
4) 9
12. The years of $20^{\text {th }}$ century and $21^{\text {st }}$ century are of 4 digits. The number of years which are divisible by the product of the 4 digits of the year is
1) 7
2) 8
3) 9
4) 10
13. If a, b, c, d, e are five integers such that $a+b=b+c=c+d=d+e=2012, a+b+c+d+e=$ 5024. Then the value of $(d-a)$ is
1) 8
2) 12
3) 10
4) 4
14. In a polynomial in x , the indices of x must be
1) integers
2) positive integers
3) non negative integers
4) real numbers
15. If $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$, then $\left(\frac{a^{2}}{b c}+\frac{b^{2}}{c a}+\frac{c^{2}}{a b}\right)$ is
1) 1
2) 0
3) - 1
4) 3
16. Consider the equation $\mathrm{x}^{2}+\mathrm{y}^{2}=2007$ given x is a real number and y is a natural number. The number of solutions of the equation is
1) 0
2) 2006
3) 88
4) 44
17. If a, b are natural numbers such that $\mathrm{a}+\mathrm{b}=2008$, then $(-1)^{\mathrm{a}}+(-1)^{\mathrm{b}}$ is
1) 1
2) -1
3) 2
4) 2 (or) -2
18. If $a^{2}-b^{2}=2011$ where a, b are integers then the most negative value of $(a+b)$ is
1) - 101
2) -2003
3) -2011
4) -1
19. If $\frac{x}{y}+\frac{y}{x}=-1$ where $x \neq 0, y \neq 0$, then the value of $x^{3}-y^{3}$ is
1) 1
2) -1
3) 0
4) $\frac{1}{2}$
20. If $x+y+z=9$ and $x y+y z+z x=23$, then the value of $x^{3}+y^{3}+z^{3}-3 x y z$ is
1) 108
2) 207
3) 669
4) 729
21. If $(3 x-1)^{7}=a_{7} x^{7}+a_{6} x^{6}+a_{5} x^{5}+\ldots . .+a_{1} x+a_{0}$, then $a_{7}+a_{6}+a_{5}+a_{4}+a_{3}+a_{2}+a_{1}+a_{0}$ is equals to
1) 0
2) 1
3) 128
4) 64
22. If $x+2$ and $x-1$ are the factors of $x^{3}+10 x^{2}+m x+n$, then the values of M and n are respectively
1) 5 and -3
2) 17 and -8
3) 7 and -18
4) 23 and - 19 []
23. Two points having same abscissa but different ordinates lie on
1) x - axis
2) y-axis
3) a line parallel to x - axis
4) a line parallel to Y - axis
24. The area of the triangle formed by the points $\mathrm{P}(0,1), \mathrm{Q}(0,5)$ and $\mathrm{R}(3,4)$ is
1) 16 squnits
2) 8 squnits
3) 4 sq units
4) 6 sq units
25. The ratio in which the line segment joining the points $A\left(a_{1}, b_{1}\right)$ and $B\left(a_{2}, b_{2}\right)$ is divided by Y - axis is
1) $-a_{1}: a_{2}$
2) $a_{1}: a_{2}$
3) $b_{1}: b_{2}$
4) $-b_{1}: b_{2}$
26. The circum centre of the triangle whose vertices are $(-2,-3),(-1,0)$ and $(7,-6)$ is[]
1) $(3,3)$
2) $(3,-3)$
3) $(2,4)$
4) $(4,2)$
27. The vertices of $\triangle A B C$ are $\mathrm{A}(4,6) \mathrm{B}(1,5)$ and $\mathrm{C}(7,2)$. A line is drawn to intersect sides AB and AC at D and E respectively such that $\frac{A D}{A B}=\frac{A E}{A C}=\frac{1}{4}$. The ratio of area $\triangle A D E$ to area of $\triangle A B C$ is
1) $1: 8$
2) $16: 1$
3) $1: 16$
4) $8: 1$
28. If the mid point of the line joining $(3,4)$ and $(k, 7)$ is (x, y) and $3 x+2 y+1=0$, then the value of k is
1) 14
2) -14
3) -11
4) 15
29. If the line segment joining the points $(3,-4)$ and $(1,2)$ is trisected at $\mathrm{P}(\mathrm{a},-2)$ and $Q\left(\frac{5}{3}, b\right)$, then the values of a and b are
1) $\frac{2}{3}, \frac{8}{3}$
2) $\frac{7}{3}, 0$
3) $\frac{1}{3}, 1$
4) $\frac{2}{3}, \frac{1}{3}$
30. Two adjascent vertices of a square are $(1,2)$ and $(-2,6)$, then the other vertices are []
1) $(5,5)(2,9)$
2) $(5,2)(5,9)$
3) $(2,5)(9,5)$
4) $(5,5),(9,2)$
31. The area of the parallellogram formed by the lines $4 y-3 x-a=0,3 y-4 x+a=0$, $4 y-3 x-3 a=0$, and $3 y-4 x+2 a=0$ is
1) a^{2} sq units
2) $9 a^{2}$ sq units
3) $\frac{2}{7} a^{2}$ sq units
4) $\frac{7}{2} a^{2}$ sq units
32. If the discriminant of the equation $6 x^{2}-b x+2=0$ is ' 1 ' then the value of ' b ' is
1) 7
2) -7
3) ± 7
4) $\pm \sqrt{7}$
33. The value of c for which the equation $\mathrm{ax}^{2}+2 \mathrm{bx}+\mathrm{c}=0$ has equal roots is
1) $\frac{b^{2}}{a}$
2) $\frac{b^{2}}{4 a}$
3) $\frac{a^{2}}{b}$
4) $\frac{a^{2}}{4 b}$
34. If the roots of $\mathrm{px}^{2}+\mathrm{qx}+2=0$ are reciprocals of each other then $\mathrm{P}=$
1) 1
2) 0
3) 2
4) 3
35. If the roots of the equation $3 a x^{2}+2 b x+c=0$ are in the ratio $2: 3$, then $8 b^{2}=$
1) $25 \frac{a}{c}$
2) 25 ac
3) $\frac{-25}{7} a c$
4) 49 ac
36. If the ratio of the roots of $a x^{2}+2 b x+c$ is same as the ratio of the roots of $p x^{2}+2 q x+r=0$, then
1) $\frac{b^{2}}{a c}=\frac{p^{2}}{q r}$
2) $\frac{b}{a c}=\frac{q}{p r}$
3) $\frac{b^{2}}{a c}=\frac{q^{2}}{p r}$
4) $\frac{b}{a c}=\frac{q^{2}}{p r}$
37. If α, β are the roots of $\mathrm{x}^{2}+\mathrm{px}+1=0$ and γ, δ are the roots of $\mathrm{x}^{2}+\mathrm{qx}+1=0$, then $(\alpha-\gamma)(\beta-\gamma)(\alpha+\delta)(\beta+\delta)=$
1) $p^{2}-q^{2}$
2) $p^{2}+q^{2}$
3) $q^{2}-p^{2}$
4) $-q^{2}-p^{2}$
38. If α, β are the roots of $\mathrm{ax}^{2}+2 \mathrm{bx}+\mathrm{c}=0$, then $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}$ is
1) $\frac{2\left(2 b^{2}-a c\right)}{a c}$
2) $\frac{4\left(b^{2}-a c\right)}{a c}$
3) $\frac{4\left(b^{2}-a c\right)}{a^{2} c^{2}}$
4) $\frac{4\left(b^{2}-a c\right)}{a}$
39. If $a x^{2}+b x+c=0$ is statisfied by every value of x, then
1) $b=0, c=0$
2) $c=0$
3) $b=0$
4) $a=b=c=0$
40. If α, β are the roots of $4 \mathrm{x}^{2}+3 \mathrm{x}+7=0$, then the value of $\frac{1}{\beta}+\frac{1}{\alpha}$ is
1) $\frac{3}{7}$
2) $\frac{-3}{7}$
3) $\frac{4}{7}$
4) $\frac{-4}{7}$
41. $\sin \alpha$ and $\cos \alpha$ are the roots of the equation $a x^{2}+b x+c=0$, then $b^{2}=$
1) $a^{2}-2 a c$
2) $a^{2}+2 a c$
3) $a^{2}-a c$
4) $a^{2}+a c$
42. In $\triangle A B C, \mathrm{AB}=\mathrm{AC}, \mathrm{D}$ is the mid point of BC, if $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}$, then $\mathrm{AD}=$ []
1) 7 cm
2) 4 cm
3) 5 cm
4) 6 cm
43. Among the following can be the measure of sides of a triangle.
1) $5 \mathrm{~cm}, 7 \mathrm{~cm}, 13 \mathrm{~cm}$
2) $6 \mathrm{~cm}, 7 \mathrm{~cm}, 13 \mathrm{~cm}$
3) $9 \mathrm{~cm}, 12 \mathrm{~cm}, 13 \mathrm{~cm}$
4) $5 \mathrm{~cm}, 9 \mathrm{~cm}, 4 \mathrm{~cm}$
44. In the given figure $P Q R=$
1) 40°
2) 50°
3) 30°
4) 70°

45. In $\triangle A B C\left\lfloor\underline{A}=\frac{\underline{B}}{2}=\frac{\underline{C}}{2}\right.$, then the measure of $\lfloor\underline{A}$ is
1) 60°
2) 30°
3) 40°
4) 36°
46. From a point ' O ' with in an equilateral triangle perpendiculars are drawn to the three sides are 5 , 7 and 9 cms in length the perimeter of the triangle is
1) $42 \sqrt{3} \mathrm{~cm}$
2) $36 \sqrt{3} \mathrm{~cm}$
3) $126 \sqrt{3} \mathrm{~cm}$
4) $54 \sqrt{3} \mathrm{~cm}$
47. The perimeter of an isosceles rightangled triangle is 2012. Its area is
1) $2012(3-\sqrt{2})$
2) $(1006)^{2}(3-\sqrt{2})$
3) $(2012)^{2}$
4) $(1006)^{2}$
48. If TP and TQ are two tangents to a circle with centre ' O ' so that $\angle P O Q=120^{\circ}$, then $\angle P T Q$ is
1) 90°
2) 80°
3) 70°
4) 60°
49. If the sum of the greatest and lowest angles of a triangle is 120° and their diffrence is 60°, then the triangle formed is
1) scalene
2) isosceles
3) right angled
4) an equilateral
50. ABCD is a cyclic quadrilateral such that AB is a diameter of the cirle circumscribing it and $\triangle A D C=140^{\circ}$, then $\lfloor B A C=$
1) 30°
2) 50°
3) 40°
4) 60°
