

MATHEMATICS TALENT SEARCH OLYMPIAD(MTSO) 2015-2016

INTSO
STAGE - 1 TIME : $\mathbf{6 0} \mathbf{m i n}$.
CLASS : X
Max. Marks : 50

Instructions:

$\Rightarrow \quad$ Fill the OMR sheet completely and carefully.
$\Rightarrow \quad$ Each question carries one mark and has only one correct answer. No negative marks
$\Rightarrow \quad$ The question paper contains 50 questions to be answered in 60 minutes.

1. On a number line $(-2+\sqrt{5})$ lies
1) between 0 and -1
2) between 1 and 2
3) between 0 and 1
4) between 2 and 3
2. The another name for irrational numbers π and e are called
1) transcendental numbers
2) Euler's numbers
3) GAUSS numbers
4) Euclid numbers
3. How many solutions are there for (a, b) if 7 ab 73 is a 5 -digit number divisible by 99
1) 1
2) 0
3) 2
4) 4
4. $\quad \frac{p}{q}$ form of $23.3 \overline{4}$
1) $\frac{2334}{100}$
2) $\frac{2101}{90}$
3) $\frac{2334}{90}$
4) $\frac{2331}{9}$
5. If $x \geq 0$ then $\sqrt{x \sqrt{x \sqrt{x \sqrt{x \sqrt{x}}}}}$
1) $\sqrt[5]{x^{31}}$
2) $5 \sqrt{x}$
$I N-3 \sqrt[32]{x^{31}}$
3) $\sqrt[32]{x}$
6. If n be any positive Integer then $\left[\frac{n+1}{2}\right]+\left[\frac{n+2}{4}\right]+\left[\frac{n+4}{8}\right]+\left[\frac{n+8}{16}\right]+$
1) $2 n$
2) ∞
3) n^{2}
4) n
7. The number of positive Integers ≤ 3600 and coprime to 3600 .
1) 960
2) 850
3) 3500
4) 3000
8. $\quad \log _{(-25)}(-25)=$
1) 1
2) -1
3) 0
4) does not exist
9. If the H.C.F of 525 and 231 is in the form $525 \mathrm{M}+231 \mathrm{n}$, then $\mathrm{M}+\mathrm{n}=$
1) 4
2) -9
3) 5
4) -5
10. Identify the nonterminating decimal
1) $\sqrt{5}$
2) $\sqrt{9}$
3) $\frac{5}{3}$
4) $\sqrt[3]{216}$
11. If ' o ' is a point lies inside the $\Delta \mathrm{ABC}$ then
1) $\mathrm{OA}+\mathrm{OB}+\mathrm{OC}>\frac{1}{2}(\mathrm{AB}+\mathrm{BC}+\mathrm{CA})$
2) $\mathrm{OA}+\mathrm{OB}+\mathrm{OC}<\frac{1}{2}(\mathrm{AB}+\mathrm{BC}+\mathrm{CA})$
3) $\mathrm{OA}+\mathrm{OB}+\mathrm{OC}>\frac{1}{3}(\mathrm{AB}+\mathrm{BC}+\mathrm{CA})$
4) $\mathrm{OA}+\mathrm{OB}+\mathrm{OC}<\frac{1}{3}(\mathrm{AB}+\mathrm{BC}+\mathrm{CA})$
12. If the ratio of the angles in a $\Delta^{l e}$ is $1: 2: 3$ then the ratio of the sides of the triangle $=$ []
1) $1: 3: 2$
2) $2: 3: 1$
3) $1: \sqrt{3}: 2$
4) $1: 3: \sqrt{2}$
13. In $\triangle A B C \angle B=90^{\circ}, B D \perp A C$, and $\mathrm{BD}=\mathrm{P}, \mathrm{AB}=\mathrm{c}, \mathrm{BC}=\mathrm{a}, \mathrm{AC}=\mathrm{b}$ then
1) $P^{2}=c^{2}$
2) $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$
3) $P^{2}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$
4) $\frac{1}{P^{2}}=\frac{1}{a^{2}}+\frac{1}{c^{2}}$
14. The length of a tangent from a point which is at a distance of 15 cm from centre of circle with radius 9 cm is
1) 13
2) 8
3) 11
4) 12
15. The number of positive integers which divide 10^{999} but not 10^{998} is
1) 1998
2) 1996
3) 1999
4) 2000
16. The number of diagonals of an n sides polygon
1) $\frac{n(n-1)}{2}$
2) $\frac{n(n+1)}{3}$
3) $\frac{n(n-3)}{2}$
4) n^{2}
17. If $\triangle A B C$ and $\triangle P Q R$ are similar triangles and $A B=12 \mathrm{~cm}, \mathrm{BC}=15 \mathrm{~cm}, \mathrm{PQ}=4 \mathrm{~cm}$ then $\mathrm{QR}=$
1) 5 cm
2) 20
3) 8 cm
4) $D=15 \mathrm{~cm}$
18. In a cyclic Quadrilateral sum of opposite angles:
1) 90°
2) 180°
3) 360°
4) 270°
19. Let $\square A B C D$ is a rectangle in which ' O ' is a point inside the rectangle . ABCD then $\mathrm{OB}^{2}+\mathrm{OD}^{2}=$
1) $\mathrm{OA}^{2}+\mathrm{OC}^{2}$
2) $\mathrm{OA}^{2}+\mathrm{OB}^{2}$
3) $\mathrm{OB}^{2}+\mathrm{OC}^{2}$
4) $\mathrm{OA}^{2}+\mathrm{OD}^{2}$

20. If BL and CM are medians of a right angled $\triangle A B C$ right angled at A , then $4\left(B L^{2}+C M^{2}\right)=$
1) $3 \mathrm{BC}^{2}$
2) $5 \mathrm{BC}^{2}$
3) $7 \mathrm{BC}^{2}$
4) $9 \mathrm{BC}^{2}$

21. If the bases and heights of the parallelogram and a triangle are in the ratios $2: 1,3: 2$ then the ratio of their areas.
1) $2: 3$
2) 3:2
3) $3: 1$
4) $6: 1$
22. In the given figure $\angle A=90^{\circ} \mathrm{EF}=5 \mathrm{~cm}, \mathrm{CB}=7 \mathrm{~cm}, \mathrm{CF}=6 \mathrm{~cm}$ then EB is equal to
1) $2 \sqrt{3} \mathrm{~cm}$
2) $\sqrt{38} \mathrm{~cm}$
3) 6 cm
4) 7 cm

23. Points $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$ divide the sides of a Rectangle ABCD in the ratio $1: 2$. What fraction of area of the rectangle is the area of the parallelogram PQRS .
1) $\frac{2}{5}$
2) $\frac{3}{5}$
3) $\frac{4}{9}$
4) $\frac{5}{9}$

24. If $(1,5)(2,3)$ and $(-2, \mathrm{p})$ are collinear then $\mathrm{P}=$
1) -11
2) 10
3) 9
4) 11
25. Find the co - ordinates of the point which divides the join of $(-1,7)$ and $(4,-3)$ in the ratio $2: 3$ internally
1) $(2,4)$
2) $(3,5)$
3) $(1,3)$
4) $(5,6)$
26. Find the ratio in which the line segment joining the points $(-3,10)$ and $(6,-8)$ is divided by $(-1,6)$ is
1) $2: 7$
2) $1: 3$
3) $4: 5$
4) $7: 6$
27. The equation of the straight line making equal intercepts on axes and passing through $(-8,3)$ is
1) $x+y=5$
2) $x-y+5=0$
3) $x-y-5=0$
4) $x+y+5=0$
28. The vertices of a triangle are $(3,4)(4,4)(4,5)$ then its orthocentre is
1) $(3,4)$
2) $(4,5)$
3) $(4,4)$
4) $(3,5)$
29. The area of the triangle with vertices $\mathrm{A}(5,2), \mathrm{B}(4,7), \mathrm{C}(7,-4)$ is
1) 4 squnits
2) 6 squnits
3) 1 sq units
4) 2 squnits
30. If $\triangle A B C$ is an issosceles triangle with $\angle B=\angle C=78^{\circ}, \mathrm{D}$ and E are points on AB, AC respectively such that $\angle B C D=24^{\circ}$ and $\angle C B E=51^{\circ}$ then $\angle B E D=$
1) 24°
2) 18°
3) 12°
4) 39°
31. The graph of a Quadratic polynomial $y=m x^{2}(M>0)$ lies in which quadrants
1) Q_{1} and Q_{3}
2) Q_{2} and Q_{3}
3) Q_{1} and Q_{2}
4) Q_{1} and Q_{4}
32. If α, β are roots of $x^{2}+7 \mathrm{x}-14=0$ then $\frac{1}{\alpha}+\frac{1}{\beta}=$
1) $\frac{1}{2}$
2) 2
3) 3
4) 4
33. What are the remainders and Quotients when $2 x^{2}+3 x+1$ is divided with $x+2$
1) $2 x-1,3$
2) $4 x+1,7$
3) $7 x+5,3$
4) $2 x+3,1$
34. If α, β, γ are the zeroes of cubic polynomial $\mathrm{ax}^{3}+\mathrm{bx}^{2}+\mathrm{cx}+\mathrm{d}$ then $=\alpha^{2}+\beta^{2}+\gamma^{2}=\quad$ [\quad]
1) $\frac{b^{2}-2 a c}{a^{2}}$
2) $\frac{b^{2}+2 a c}{b^{2}}$
3) $\frac{b^{2}+2 a c}{a^{2}}$
4) $\frac{b^{2}-2 a c}{c^{2}}$
35. The last two digits of $2005^{2006}+(2006)^{2005}$
1) 11
2) 01
3) 21
4) 31
36. If α, β are the roots of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ then $\frac{\alpha^{2}+\beta^{2}}{\alpha^{-2}+\beta^{-2}}=$
1) $\frac{b^{2}}{a^{2}}$
2) $\frac{c^{2}}{a^{2}}$
3) $\frac{b^{2}}{c^{2}}$
4) $\frac{a^{2}}{c^{2}}$
37. If the zeroes of $x^{3}-3 x^{2}+x+1=0$ are $a-b, a, a+b$ then $(a, b)=$
1) $(1, \sqrt{2})$
2) $(\sqrt{2}, 1)$
3) $(\sqrt{3}, 1)$
4) $(\sqrt{2}, \sqrt{3})$
38. If $f(x)=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots---a_{n}$ is a polynomial of degree n and $a_{0}+a_{1}+a_{2}+----+a_{n}=0$ then what is the factor of $f(x)$
1) $x+2$
2) $x-1$
3) $x+3$
4) $x-2$
39. Find two numbers whose sum is 27 and product is 182
1) 12,15
2) 11,16
3) 13,14
4) 9,18
40. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are positive integers satisfying $5 \mathrm{a}+5 \mathrm{~b}+2 \mathrm{ab}=92,5 \mathrm{~b}+5 \mathrm{c}+2 \mathrm{bc}=136,5 \mathrm{c}+5 \mathrm{a}+2 \mathrm{ca}=244$ then $7 \mathrm{a}+8 \mathrm{~b}+9 \mathrm{c}=$
1) 171
2) 172
3) 174
4) 175
41. If $x=a+2, y=a+1$ are the solutions of the equation $5 x+3 y-7=0$ then $a=$
1) $\frac{3}{4}$
2) $\frac{-3}{4}$
3) $\frac{1}{2}$
4) $\frac{1}{4}$
42. If (x, y) lies in $2^{\text {nd }}$ Quadrant then $\left(\mathrm{x}_{1}-\mathrm{y}\right)$ lies
1) I Quadrant
2) II Quadrant
3) III Quadrant
4) IV Quadrant
43. In a $\triangle A B C \angle C=3 \angle B=2(L A+\angle B)$ then $\angle A, \angle B \angle C$
1) $120,40,20$
2) $20,40,120$
3) $40,20,120$
4) $120,20,40$
44. $\square A B C D$ is a cyclic Quadrilateral then find $\angle A, \angle B, \angle C, \angle D$
1) $120,70,60,110$
2) $110,60,70,120$
3) $100,60,80,120$
4) $120,80,60,100$

45. If $\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$ and $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$ then given system has how many solutions
1) 2
2) 3
3) ∞
4) 1
46. For what value of K the following pair of linear equations have infinitely many solutions $\mathrm{kx}+3 \mathrm{y}$ $-(k-3)=0,12 x+k y-k=0$
1) $k=0$
2) $K=6$
3) $K=7$
4) both A and B
47. Six straight lines are drawn in a plane with no two parallel and no three concurrent then the number of regions into which they divide the plane
1) 7
2) 11
3) 22
4) 20
48. Any solution of linear equation $2 x+0 y=9$ in two variables is of the form
1) $\left(\frac{9}{2}, M\right)$
2) $\left(n, \frac{-9}{2}\right)$
3) $\left(0, \frac{-9}{2}\right)$
4) $\left(\frac{9}{2}, 0\right)$
49. ABCDEF is non - regular hexagon where all the six sides touch a circle and all the six sides are of equal length. If $\angle A=140^{\circ}$ then $\angle D=$ \qquad
1) 100°
2) 105°
3) 110°
4) 120°
50. What is the reminder when $x^{5}-a^{2} x^{3}+2 x+a-3$ is divided with $x-a$
1) $a+3$
2) $3 a-3$
3) $3 a+4$
4) $4 a+3$
