	SS : X	STAC	GE - 1	TIME Max. Marks	: 60 i : 50	min
lnstı ⇔ ⇔ ⇔	ructions: Fill the OMR sheet Each question carr The question paper	completely and carefull ies one mark and has of contains 50 questions i	ly. nly one correct answer. I to be answered in 60 mir	No negative man utes.	rks	
l.	On a number line (–2	$2+\sqrt{5}$) lies			[]
	1) between 0 and -1	2) between 1 and 2	3) between 0 and 1	4) between 2	2 and 3	3
2.	The another name for 1) transcendental num 3) GAUSS numbers	r irrational numbers π and the set of the	and e are called 2) Euler's numbers 4) Euclid numbers		[]
5.	How many solutions 1) 1	are there for (a,b) if 7ab 2) 0	o73 is a 5-digit number o 3) 2	livisible by 99 4) 4	[]
•	$\frac{p}{q}$ form of 23.3 $\overline{4}$	477			[]
	1) $\frac{2334}{100}$	2) $\frac{2101}{90}$	3) $\frac{2334}{90}$	4) $\frac{2331}{9}$		
5.	If $x \ge 0$ then $\sqrt{x\sqrt{x\sqrt{x}}}$.	$\overline{x\sqrt{x\sqrt{x}}}$			[]
	1) $\sqrt[5]{x^{31}}$	2) $5\sqrt{x}$ IN	3) $\sqrt[3]{x^{31}}$	4) $\sqrt[32]{x}$		
	If n be any positive l	Integer then $\left[\frac{n+1}{2}\right] + \left[\frac{n+1}{2}\right]$	$\left[\frac{n+2}{4}\right] + \left[\frac{n+4}{8}\right] + \left[\frac{n+8}{16}\right]$	=	[]
	1) 2n	2) ∞	3) n ²	4) n		
•	The number of positi 1) 960	ve Integers ≤3600 and 2) 850	coprime to 3600. 3) 3500	4) 3000	[]
•	$\log_{(-25)}(-25) =$				[]
	1) 1	2) -1	3) 0	4) does not e	exist	
•	If the H.C.F of 525 a 1) 4	nd 231 is in the form 52 2) -9	25 M + 231 n, then M + 1 3) 5	n = 4) -5	[_
0.	Identify the nontermi	nating decimal			[]
	1) /-		2) 5	$4) - 3\sqrt{216}$		

11.	If 'o' is a point lies inside the Δ ABC	C then	[]
	1) OA + OB+ OC > $\frac{1}{2}$ (AB+ BC + O	CA) 2) OA+OB+OC < $\frac{1}{2}$ (AB+BC+CA)		
	3) OA +OB+ OC> $\frac{1}{3}$ (AB+BC+ CA	A) 4) OA + OB + OC < $\frac{1}{3}$ (AB+BC + CA	.)	
12.	If the ratio of the angles in a Δ^{le} is 1 : 1) 1 : 3 : 2 2) 2 : 3 : 1	$2:3 \text{ then the ratio of the sides of the triangle} = 3) 1: \sqrt{3}:2 $ 4) $1:3: \sqrt{2}$	[]
13.	In $\triangle ABC \ \angle B = 90^\circ$, $BD \perp AC$, and	nd $BD = P$, $AB = c$, $BC = a$, $AC = b$ then	[]
	1) $P^2 = c^2$ 2) $\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{a^2}$	$\frac{1}{b^2}$ 3) $P^2 = \frac{1}{a^2} + \frac{1}{b^2}$ 4) $\frac{1}{P^2} = \frac{1}{a^2} + \frac{1}{c}$	$\frac{1}{2^2}$	
14.	The length of a tangent from a point	t which is at a distance of 15cm from centre of cir	rcle v	with
	radius 9cm is 1) 13 2) 8	3) 11 4) 12	L]
15.	The number of positive integers which1) 19982) 1996	ch divide 10 ⁹⁹⁹ but not 10 ⁹⁹⁸ is 3) 1999 4) 2000	[]
16.	The number of diagonals of an n side	es polygon	[]
	1) $\frac{n(n-1)}{2}$ 2) $\frac{n(n+1)}{3}$	3) $\frac{n(n-3)}{2}$ 4) n^2		
17.	If $\triangle ABC$ and $\triangle PQR$ are similar trian	ngles and $AB = 12$ cm, $BC = 15$ cm, $PQ = 4$ cm then	QR=	-
10	1) 5cm 2) 20	3) 8cm 4) $D = 15cm$	L r]
10.	$\begin{array}{c} \text{In a cyclic Quadriateral sum of oppo}\\ 1) 90^{\circ} \\ \end{array} \begin{array}{c} 2) 180^{\circ} \end{array}$	3) 360° 4) 270°	L]
19.	Let $\square ABCD$ is a rectangle in which 1) $OA^2 + OC^2$ 2) $OA^2 + OB^2$ 3) $OB^2 + OC^2$ 4) $OA^2 + OB^2$	h 'O' is a point inside the rectangle . ABCD then OF B^2 P P D^2 $D^$	B ² +O	D ² =
20	If BL and CM are medians of a right	t angled AABC right angled at A then $4(BI^2 + C)$	$M^{2}) =$	_
20.	1) 3BC²	$\frac{B}{B}$	[]
	2) 5 BC ²	\bigwedge		
	3) 7 BC ²	М		
	4) 9BC ²			
21.	If the bases and heights of the parallel of their areas. 1) 2 : 3 2) 3: 2	logram and a triangle are in the ratios $2:1, 3:2$ then 3) $3:1$ 4) $6:1$	the r [atio]
22.	In the given figure $\angle A = 90^\circ$ EF = 5	5cm, $CB = 7cm$, $CF = 6cm$ then EB is equal to	[]
	1) $2\sqrt{3}cm$	c		
	2) $\sqrt{38}cm$			
	3) 6cm			
	4) 7cm	$ \begin{array}{c c} & & \\ A & & \\ F & & B \end{array} $		

23.	Points P,Q,R,S divide the rectangle is the are	the sides of a Rectangle a of the parallelogram F	ABCD in the ratio 1:2.	What fraction	of are [ea of]	
	1) $\frac{2}{5}$	2) $\frac{3}{5}$					
	3) $\frac{4}{9}$	4) $\frac{5}{9}$	$\begin{array}{c} 3\\ 2\\ A1p \\ 2 \\ B \end{array}$				
24.	If (1,5) (2,3) and (–2,p 1) –11	b) are collinear then P = 2) 10	3) 9	4) 11	[]	
25.	Find the co - ordinates internally $(2, 4)$	s of the point which divi (2) $(3, 5)$	ides the join of $(-1,7)$ an	(4,-3) in the	ratio 1	2:3]	
26	Find the ratio in which	(5,5)	σ the points (-3.10) and	(6 - 8) is divide	d by (-	1.6)	
20.	is 1) 2: 7	2) 1 : 3	3) 4 : 5	4) 7 : 6	[]	
27.	The equation of the str	raight line making equal	intercepts on axes and p	bassing through	(-8,3	3) is	
	1) $x + y = 5$ 3) $x - y - 5 = 0$		2) $x - y + 5 = 0$ 4) $x + y + 5 = 0$		[]	
28.	The vertices of a trian 1) (3,4)	gle are (3,4) (4,4) (4,5) t 2) (4,5)	hen its orthocentre is 3) (4,4)	4) (3,5)	[]	
29.	The area of the triang 1) 4 sq units	le with vertices A(5,2),I 2) 6 sq units	3(4,7),C(7,-4) is 3) 1 sq units	4) 2 sq units	[]	
30.	30. If $\triangle ABC$ is an issosceles triangle with $\angle B = \angle C = 78^\circ$, D and E are points on AB, AC respective						
	such that $\angle BCD = 24$ 1) 24°	$\angle CBE = 51^\circ$ the 2) 18°	$\begin{array}{l} \text{n} \ \angle BED = \\ 3) \ 12^{\circ} \end{array}$	4) 39°	[]	
31.	The graph of a Quadra 1) Q_1 and Q_3	atic polynomial $y = mx^2$ 2) Q_2 and Q_3	² (M>0) lies in which qu 3) Q_1 and Q_2	adrants 4) Q_1 and Q_4	[]	
32.	If α , β are roots of x^2	$+7x - 14 = 0$ then $\frac{1}{\alpha} + \frac{1}{\alpha}$	$\frac{1}{3} =$		[]	
	1) $\frac{1}{2}$	2) 2	3) 3	4) 4			
33.	What are the remainder $1) 2x-1,3$	ers and Quotients when 2) 4x+1,7	2x ² +3x +1 is divided w 3) 7x+5,3	ith x + 2 4) 2x+3,1	[]	
34.	If α, β, γ are the zeroe	s of cubic polynomial a	$x^3 + bx^2 + cx + d$ then = α	$\alpha^2 + \beta^2 + \gamma^2 =$	[]	
	$1) \ \frac{b^2 - 2ac}{a^2}$	$2) \frac{b^2 + 2ac}{b^2}$	$3) \frac{b^2 + 2ac}{a^2}$	$4)\frac{b^2 - 2ac}{c^2}$			
35.	The last two digits of 1) 11	2005 ²⁰⁰⁶ + (2006) ²⁰⁰⁵ 2) 01	3) 21	4) 31	[]	
36.	If α, β are the roots o	f ax ² + bx+c = 0 then $\frac{d}{dt}$	$\frac{\alpha^2 + \beta^2}{\alpha^{-2} + \beta^{-2}} =$		[]	
	1) $\frac{b^2}{a^2}$	2) $\frac{c^2}{a^2}$	3) $\frac{b^2}{c^2}$	4) $\frac{a^2}{c^2}$			
www	v.intso.co.in					3	

www	v.intso.co.in					4
50.	1) $a + 3$	$2) 3a - 3 \qquad \qquad$	3) 3a + 4	4) 4a + 3	L	Ţ
50	1) 100° What is the reminder v	2) 105° when $\mathbf{x}^5 = a^2 \mathbf{x}^3 + 2\mathbf{x} + a$	3) 110°	4) 120°	ſ	1
49.	ABCDEF is non - reg of equal length. If $\angle A$	Sular hexagon where all $A = 140^{\circ}$ then $\angle D = $	the six sides touch a circ	le and all the si	x side [s are]
	1) $\left(\frac{9}{2}, M\right)$	$2)\left(n,\frac{-9}{2}\right)$	$3)\left(0,\frac{-9}{2}\right)$	$4)\left(\frac{9}{2},0\right)$		
48.	Any solution of linear	equation $2x + 0y = 9$ in	two variables is of the fo	orm	[]
	1) 7	2) 11	3) 22	4) 20		
47.	Six straight lines are on number of regions into	drawn in a plane with i which they divide the	no two parallel and no plane	three concurrent	nt ther	1 the
10.	-(k-3) = 0, $12x + ky1) k = 0$	-k = 0 2) K = 6	3) K = 7	4) both A and	[1 B]
46	For what value of K th	e following pair of linea	3∞	4) I ly many solutic	L ons kx] + 3v
45.	If $a_1 x + b_1 y + c_1 = 0$, a_2	$x + b_2 y + c_2 = 0$ and $\frac{a_1}{a_2}$	$\neq \frac{b_1}{b_2}$ then given system	has how many	soluti	ions 1
	1) 120,70,60,110 2) 110,60,70,120 3) 100,60,80,120 4) 120,80,60,100	C 3y- 4y+! D	$\begin{array}{c} 1,2,2,2,2,2,2,2,2\\ \hline 5 & 4x\\ \underline{20 & 7x+5}\\ A \end{array}$		L	L
44.	$\square ABCD \text{ is a cyclic } ($	2) 20,40,120 Duadrilateral then find	A / B / C / D	4) 120,20,40	ſ	1
43.	In a $\triangle ABC \ \angle C = 3 \angle C$ 1) 120 40 20	$B = 2(LA + \angle B) \text{ then } \angle B = 2(LA + \angle B)$	$(A, \angle B \angle C)$ 3) 40 20 120	4) 120 20 40	[]
42.	If (x,y) lies in 2 nd Quad 1) I Quadrant	drant then (x ₁ –y) lies 2) II Quadrant	3) III Quadrant	4) IV Quadra	[nt]
	1) $\frac{3}{4}$	2) $\frac{-3}{4}$	3) $\frac{1}{2}$	4) $\frac{1}{4}$	L	-
41.	If $x = a + 2$, $y = a + 1$	are the solutions of the	equation $5x + 3y - 7 = 0$	then a=	ſ	1
40.	If a,b,c are positive in then $7a+8b+9c =$ 1) 171	tegers satisfying 5a +5	b+2ab= 92, 5b+5c+2bc	= 136, 5c+5a+	-2ca = [244]
39.	Find two numbers who 1) 12,15	ose sum is 27 and produ 2) 11,16	act is 182 3) 13,14	4) 9,18	[]
38.	If $f(x) = a_0 x^n + a_1 x^{n-1}$ then what is the factor 1) $x + 2$	$a_{2}x^{n-2} + \dots + a_{n}$ is a pool of $f(x)$ 2) x-1	olynomial of degree n and 3) x+3	$a_0 + a_1 + a_2 + -$ 4) x-2	+ : [₁=0]
	1) $\left(1,\sqrt{2}\right)$	2) $\left(\sqrt{2},1\right)$	3) $\left(\sqrt{3},1\right)$	4) $\left(\sqrt{2},\sqrt{3}\right)$	L	L
37.	If the zeroes of $x^3 - 3x^2 + x + 1 = 0$ are a-b,a, a+b then (a,b) =]