## Time: 9:00 AM to 10:15 AM

### **Question Paper Code: 41**

| Roll No. of |  |  |  |  |  |  |  |
|-------------|--|--|--|--|--|--|--|
| Student's   |  |  |  |  |  |  |  |

Write the question paper code (mentioned above) on YOUR OMR Answer Sheet (in the space provided), otherwise your Answer Sheet will NOT be evaluated.

Note that the same Question Paper Code appears on each page of the question paper.

#### **Instructions to Candidates:**

- 1. Use of mobile phone, smart watch, and iPad during examination is STRICTLY PROHIBITED.
- 2. In addition to this question paper, you are given OMR Answer Sheet along with Candidate's copy.
- 3. On the OMR sheet, make all the entries carefully in the space provided **ONLY** in **BLOCK CAPITALS** as well as by properly darkening the appropriate bubbles. **Incomplete/incorrect/carelessly filled information may disqualify your candidature.**
- 4. On the OMR Answer Sheet, use only **BLUE or BLACK BALL POINT PEN** for making entries and filling the bubbles.
- 5. Your **14-digit roll number and date of birth** entered on the OMR Answer Sheet shall remain your login credentials means login id and password respectively for accessing your performance / result in Indian Olympiad Qualifier in Astronomy 2021-22 (Part I).
- 6. Question paper has two parts. In part A 1 (Q. No.1 to 24) each question has four alternatives, out of which **only one** is correct. Choose the correct alternative and fill the appropriate bubble, as below



In part A - 2 (Q. No. 25 to 32) each question has four alternatives out of which any number of alternative(s) (1, 2, 3, or 4) may be correct. You have to choose **all** correct alternative(s) and fill the appropriate bubble(s), as shown

Q.No.30 a c

- 7. For **Part A 1**, each correct answer carries 3 marks whereas 1 mark will be deducted for each wrong answer. In **Part A 2**, you get 6 marks if all the correct alternatives are marked and no incorrect. No negative marks in this part.
- 8. Rough work should be done in the space provided. There are 07 printed pages in this paper
- 9. Use of **non programmable scientific** calculator is allowed.
- 10. No candidate should leave the examination hall before the completion of the examination.
- 11. After submitting answer paper, take away the question paper & Candidate's copy OMR sheet for your reference.

Please DO NOT make any mark other than filling the appropriate bubbles properly in the space provided on the answer sheet.

Answer sheets are evaluated using machine, hence CHANGE OF ENTRY IS NOT ALLOWED. Scratching or overwriting may result in a wrong score.

DO NOT WRITE ON THE BACK SIDE OF THE ANSWER SHEET.

#### **Instructions to Candidates (Continued):**

You may read the following instructions after submitting the answer sheet.

- 12. Comments/Inquiries/Grievances regarding this question paper, if any, can be shared on the Inquiry/Grievance column on <a href="https://www.iapt.org.in">www.iapt.org.in</a> on the specified format till January 29, 2022.
- 13. The answers/solutions to this question paper will be available on the website: <a href="https://www.iapt.org.in">www.iapt.org.in</a> by January 27, 2022.

### 14. CERTIFICATES and AWARDS:

Following certificates are awarded by IAPT to students, successful in the Indian Olympiad Qualifier in Astronomy 2021-22 (Part I)

- (i) "CENTRE TOP 10 %" To be downloaded from iapt.org.in after 15.03.22
- (ii) "STATE TOP 1 %" Will be dispatched to the examinee
- (iii) "NATIONAL TOP 1 %" Will be dispatched to the examinee
- (iv) "GOLD MEDAL & MERIT CERTIFICATE" to all students who attend OCSC 2022 at HBCSE Mumbai

Certificate for centre toppers shall be uploaded on iapt.org.in

- 15. List of students (with centre number and roll number only) having score above MAS will be displayed on the website: <a href="www.iapt.org.in">www.iapt.org.in</a> by February 06, 2022. See the Minimum Admissible Score Clause on the student's brochure on the web.
- 16. List of students eligible for evaluation of IOQA 2021-22(Part II) shall be displayed on www.iapt.org.in by February 10, 2022.

## Physical constants you may need....

| Magnitude of charge on electron $e = 1.60 \times 10^{-19} C$            | Avogadro's constant $A = 6.023 \times 10^{23}  mol^{-1}$                     |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Mass of electron $m_e = 9.10 \times 10^{-31} kg$                        | Speed of light in free space $c = 3.0 \times 10^8 \mathrm{m/s}$              |
| Mass of proton $m_p = 1.67 \times 10^{-27} kg$                          | Permittivity of free space $\varepsilon_0 = 8.85 \times 10^{-12} C^2 / Nm^2$ |
| Acceleration due to gravity $g = 9.81 \text{ ms}^{-2}$                  | Permeability of free space $\mu_0 = 4\pi \times 10^{-7}  H  /  m$            |
| Universal gravitational constant $G = 6.67 \times 10^{-11} Nm^2 / Kg^2$ | Planck's constant $h = 6.63 \times 10^{-34} Js$                              |
| Universal gas constant $R = 8.31 J / mol K$                             | Faraday constant = $96,500 \ C/mol$                                          |
| Boltzmann constant $k = 1.38 \times 10^{-23} J / K$                     | Rydberg constant $R = 1.097 \times 10^7  m^{-1}$                             |
| Stefan's constant $\sigma = 5.67 \times 10^{-8} W / m^2 K^4$            |                                                                              |
|                                                                         |                                                                              |

Time: 75 minute Max. Marks: 120

# Attempt All Thirty Two Questions

### ONLY ONE OUT OF FOUR OPTIONS IS CORRECT. BUBBLE THE CORRECT OPTION.

| 1. | Two balls of masses $m_1$ and $m_2$ respectively $(m_1 > m_2)$ are projected towards each other from  |
|----|-------------------------------------------------------------------------------------------------------|
|    | initial separation d at $t = 0$ such that their motion is in the same plane. Initial velocity of each |
|    | ball is $\nu$ facing towards each other at an angle $45^0$ from the horizontal. The two balls         |
|    | undergo completely inelastic collision, and fuse to form a single body of mass $m_1 + m_2$ . The      |
|    | total time t (counting from $t = 0$ ) after which the fused body will fall to the ground (neglecting  |
|    | air resistance) is                                                                                    |

- (a)  $\frac{v\sqrt{2}}{g}$  (b)  $\frac{m_1v\sqrt{2}}{g(m_1+m_2)}$  (c)  $\frac{v}{g\sqrt{2}}$  (d)  $\frac{(m_1+m_2)v}{m_1g\sqrt{2}}$

2. The solution for 
$$\frac{dy}{dx} + y = Ae^{-x}$$
 for  $y(1) = 5$  is (here A is constant)  
(a)  $\frac{1}{5}e^{-x}$  (b)  $[5e + A(x - 1)]e^{-x}$ 

- (c)  $[5e A(x-1)]e^{-x}$
- (d)  $[5e]e^{-x}$

3. A 1-inch telescope is pointed towards Sirius (m = -1.4) and another bigger one towards Castor (m = 1.6), m being the apparent magnitude, but both the telescopes deliver equal amount of energy per second to the CCD detector at the eyepiece. The objective diameter of the bigger telescope is (using  $log_{10} 2 = 0.3$ )

- (a) 2 inch
- (b) 4 inch
- (c) 8 inch
- (d) 16 inch

4. Consider a circle circumscribing an equilateral triangle of side L. The ratio of the area of the circle to that of the equilateral triangle is

- (a)  $\frac{\pi}{2\sqrt{2}}$
- (b)  $\frac{4\pi}{3\sqrt{3}}$  (c)  $\frac{\pi}{\sqrt{3}}$
- (d)  $\frac{6\pi}{\sqrt{2}}$

5. A light ray having frequency f and wavelength  $\lambda$  enters from air into water. After entering into water, its

(a) f remains unchanged,  $\lambda$  decreases

(b) f increases and  $\lambda$  decreases

(c) f decreases, λ remains unchanged

(d) f and  $\lambda$  both decrease

6. A lens of diameter d and focal length f is used to project image of an object on a screen. The object is kept at a distance u from the lens and consists of two points separated by distance r<sub>o</sub> in the plane perpendicular to the principal axis. The wavelength of light used is  $\lambda$ . The two points will be resolved in the image if

(a) 
$$u < \frac{1.22 \lambda r_o}{d}$$

(b) 
$$d > \frac{1.22 \ \lambda f}{r_0}$$

(c) 
$$u < \frac{r_o d}{1.22 \lambda}$$

(d) 
$$d > \frac{1.22 \lambda u r_o}{f}$$

| 7.  | Assume centre                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ensity $(\rho)$ of the $\rho_0$ for r <                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | as followin                                                                 | g dependenc                                                  | e on the d                              | listance r from the                       |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------|-------------------------------------------|--|
|     |                                                                                                                                                                                                                                 | $\rho(r) \propto$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{1}{r}$ for $r_0 \le$                                                                     | $\leq r \leq R$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                             |                                                              |                                         |                                           |  |
|     | R being earth's radius and $\rho_0$ is constant density of the central core. For any point r between $r_0$ and R, the gravitational acceleration $g(r)$ will have the following form (A and B being constants in the following) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                             |                                                              |                                         |                                           |  |
|     | (a) A +                                                                                                                                                                                                                         | $\frac{B}{r^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (b)                                                                                             | Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0                                                                          | c) $\frac{A}{r} + Br$                                        | (                                       | (d) $A + Br$                              |  |
| 8.  | (a) $A + \frac{B}{r^2}$ (b) $Ar$ (c) $\frac{A}{r} + Br$ (d) $A + Br$ Given $f(x)$ is a continuous function such that for $x \le 1$ , $f(x) = \frac{K}{(x+4)^2}$ and for $x \ge 1$ , $f(x) = \frac{K}{(x+4)^2}$ .                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                             |                                                              |                                         |                                           |  |
|     |                                                                                                                                                                                                                                 | e of K i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (2011)                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                             |                                                              |                                         |                                           |  |
|     | (a) $\frac{1}{5}$                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (c) 25                                                                      |                                                              | (d) 12                                  | 5                                         |  |
| 9.  | The geor                                                                                                                                                                                                                        | metric alb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | edo (A) of the                                                                                  | solar syste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | em objects                                                                  | is related to                                                | their abso                              | olute magnitude (M)                       |  |
|     | and dian                                                                                                                                                                                                                        | neter (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | as $A = (\frac{1329}{})$                                                                        | $(10^{-M/5})^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Initially                                                                   | it was thoug                                                 | ht that the                             | e radius of Phobos,                       |  |
|     |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 | - ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                             |                                                              |                                         | e as that of Mars                         |  |
|     |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                             |                                                              |                                         | us to 10 km. The                          |  |
|     |                                                                                                                                                                                                                                 | lbedo of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Phobos, therefore                                                                               | ore, is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ( ) 0 07                                                                    |                                                              | (1) 0 1                                 | 2                                         |  |
|     | (a) 0.10                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (b) 0.05                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (c) 0.07                                                                    |                                                              | (d) 0.1                                 | 2                                         |  |
| 10. | The area $(x \text{ and } y)$                                                                                                                                                                                                   | a in the re<br>are in cn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | egion $1 \le x \le$ n and area is in                                                            | 2 betwe cm <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | en the line                                                                 | y = 2x + 10                                                  | and the                                 | curve $y = 3x^2$ is                       |  |
|     | (a) 6                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (b) 5                                                                                           | ŕ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (c) 7                                                                       |                                                              | (d) 8                                   | 3                                         |  |
| 11. | The summer triangle refers to the three stars  (a) Vega, Altair and Deneb  (b) Regulus, Antares and Sirius  (c) Sirius, Procyon and Betelgeuse  (d) Pollux, Caster and Regulus                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                             |                                                              |                                         |                                           |  |
| 12. | The thre (a) 12                                                                                                                                                                                                                 | e points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (1, 0, 5), (2, 3, (b) – 14                                                                      | 1) and (4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (c) - 7                                                                     | collinear. Tl                                                | ne value o                              | of r is:                                  |  |
| 13. | Supposi                                                                                                                                                                                                                         | ng the dis<br>of stars h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e discovered 20<br>tribution of sta<br>aving parallaxe<br>(b) 25600                             | rs around<br>s 0.025"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | us is pretty                                                                | much homo                                                    |                                         | completeness. and isotropic, the          |  |
|     |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                             |                                                              |                                         |                                           |  |
| 14. |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ) for which $z + 3y \le 90$ , $x$ ,                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                             | naximum un                                                   | der the co                              | onstraints                                |  |
|     | (a) (0, 30)                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (b) (0, 40)                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (40, 0)                                                                     |                                                              | (d) (30,                                | 10)                                       |  |
| 15. |                                                                                                                                                                                                                                 | laws for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | planetary orbit                                                                                 | s are deriv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ved using N                                                                 | lewton's law                                                 | of gravit                               | ational force.                            |  |
|     | First:<br>Second:<br>Third: So<br>Newton'<br>of force                                                                                                                                                                           | All plan The line quare of the state of the | ets move in ell joining the plate he period of regravitation receptodies of mass $\vec{F} = -1$ | when to the volution of eives correctly $M = M + \frac{GMm}{r^2} \left(1 + \frac{Mm}{r^2} \left(1 + \frac{Mm}{$ | sun sweeps of a planet is ections from at a dista $\frac{A}{r^2}$ $\hat{r}$ | s equal area is proportions or relativity the nee r given be | in equal ti<br>al to cube<br>neory, wit | of semi-major axis.<br>h the modified law |  |
|     |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | constant. With can be sure the                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                             |                                                              |                                         | which of the                              |  |

(c) Second

(b) First

(a) First and Second

(d) All laws will change

- 16. Globular clusters in our galaxy are primarily found:
  - (a) in the spiral arms.
  - (b) distributed throughout the disk including regions between the spiral arms.
  - (c) in the bulge at the center of our galaxy.
  - (d) in the halo of our galaxy
- 17. Consider the function  $\prod_{n=1}^{\infty} \frac{1}{1-x^n}$ . What is the coefficient of  $x^5$  in its expansion near x = 0 (a) 7 (b) 5 (c) 3 (d) 10

- 18. If a and b are roots of  $x^2 6x + p = 0$  and c and d are roots of  $x^2 24x + q = 0$ , and if a, b, c, d are in geometric progression then the value of the product pq is;
  - (a) 192
- (b) 64
- (c) 24
- (d) 1024
- 19. A student measures the displacement x from the equilibrium of a stretched spring and reports it to be 100  $\mu$ m with a 1% error. The spring constant K is known to be 500 Nm<sup>-1</sup> with 0.5% error. The percentage of error in the estimate of the potential energy  $V = \frac{1}{2}Kx^2$  is
  - (a) 0.8 %

- 20. Two satellites are in the same geosynchronous orbit (assumed to be circular), but in diametrically opposite positions. One satellite descends into a lower circular orbit and catches up with the other after 8 complete orbits. Neglect the time of descent into lower orbit. If the radius of the geosynchronous orbit is 40000 km, the radius of the lower, faster orbit is about (using  $7.5^{2/3} \approx 3.84$ )
  - (a)  $\approx 32400 \ km$
- (b)  $\approx 34000 \ km$
- (c)  $\approx 36000 \, km$
- (d)  $\approx 38400 \, km$
- 21. The ratio of the masses of the Earth and Mars is 10 and the ratio of the radii of the Earth and Mars is 2. If two persons jump with the same velocity and angle off the surface of each of the planets, the ratio of maximum height reached at Earth to that reached at Mars is

(b)  $\frac{2}{5}$ 

(c)  $\frac{5}{2}$ 

- (d) depends on the ratio of the masses of two people
- 22. A schematic Hertzsprung-Russel diagram for stars in the solar neighborhood is shown below.



The radius R of a star, its luminosity L and surface temperature T are related as  $R \propto \frac{\sqrt{L}}{T^2}$ 

If for a star  $\frac{R}{R_{\text{min}}} = 20$  and T = 3000 K (using T<sub>sun</sub> = 6000 K), then the star is a

- (a) Blue Supergiant
- (b) Blue Giant
- (c) Red Supergiant
- (d) Red Giant

### In questions 23 and 24 mark your answer as

- (a) If statement I is true and statement II is true and also if the statement II is a correct explanation of statement I
- (b) If statement I is true and statement II is true but the statement II is not a correct explanation of statement I
- (c) If statement I is true but the statement II is false
- (d) If statement I is false but statement II is true
- 23. Statement I: We cannot see what is near the centre of Galaxy Statement II: There is a super – massive black hole at the centre of Galaxy
- 24. Statement I: Hydrogen gas is not found in large amount in the atmosphere of terrestrial planets.

Statement II: Speed of Hydrogen molecules was higher than the escape velocity on the terrestrial planets.

### A-2ANY NUMBER OF OPTIONS 4, 3, 2 or 1 MAY BE CORRECT MARKS WILL BE AWARDED ONLY IF ALL THE CORRECT OPTIONS ARE BUBBLED.

- 25. Electromagnetic waves also undergo Doppler effect just as sound waves. Use the expression of Doppler effect valid for small velocities (of source, or observer, they both give the same result for small velocities), replacing sound speed by speed of light c. A hydrogen atom moving along x axis with velocity v undergoes transition of electron from 1<sup>st</sup> excited level (n=2) to the ground state, emitting radiation which travels along x axis. This radiation is absorbed by another hydrogen atom at rest in its ground state causing it to get excited to n = 3level. The value of v is approximately
  - (a)  $5.55 \times 10^4 \, km / sec$

(b)  $9.45 \times 10^4 \, km / \text{sec}$ 

(c) 0.315c

- (d) 0.185c
- 26. A metal rod moving through a magnetic field may get induced e.m.f. (depending on the direction of the magnetic field and the orientation of the rod) due to the fact that
  - (a) current flowing through the rod leads to a force on the rod due to magnetic field
  - (b) magnetic field applies force on electrons in the rod
  - (c) changing magnetic field produces electric field
  - (d) electrons have a magnetic dipole moment which feels force due to magnetic field
- 27. If  $\sin\left(\frac{\pi}{3}\right) = 1 2\sin^2\theta$  then  $\theta$  can be
  - (a)  $\frac{\pi}{12}$

(b)  $\frac{13\pi}{12}$ (d)  $\frac{25\pi}{12}$ 

(c)  $-\frac{11\pi}{12}$ 

- 28. Let the 2 x 2 matrix A =  $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ , where a, b, c, d  $\in$  R, with  $A^2 = 0$ . Then,
  - (a) A = 0

(b) a + d = 0 and  $\det A = 0$ 

(c) A<sup>-1</sup> does not exist

(d) a + d = 0 and b, c can be arbitrary

- 29. A light beam passes through a transparent medium of thickness L. After passing through the medium, the intensity of the light beam reduces because
  - (a) each photon loses some energy in the medium
  - (b) some photons get absorbed in the medium
  - (c) some photons get scattered by the medium in different directions
  - (d) some photons get reflected back as the light enters the transparent medium
- 30. Consider a pyramid with square base of length L and triangular faces as equilateral triangle. For this pyramid, the true statement(s) is / are
  - (a) The height of the pyramid is  $\frac{L}{\sqrt{2}}$
  - (b) The area of the pyramid surface (including the base) is  $(\sqrt{3} + 1)L^2$ .
  - (c) The volume of the pyramid is  $L^3$ .
  - (d) The angle between the base and the side is  $tan^{-1}\sqrt{2}$ .
- 31. Analysis of the spiral galaxy NGC 1357 spectra reveals a strong emission line at 6606 Å. Knowing the  $H_{\alpha}$  emission line is at 6560 Å.

Use  $c = 3 \times 10^5$  km/s and Hubble's constant = 70 (km/s)/Mpc. Choose correct option(s)

- (a) The velocity of NGC 1357 is about  $2 \times 10^3$  km/s.
- (b) NGC 1357 is an example of blue-shifted galaxy.
- (c) The galaxy is at a distance of 30 Mpc from us.
- (d) It is an old galaxy having little to no star formation regions.
- 32. The Hubble plot below depicts two alternate universe A (solid line) and B (dashed curve).



The quantity z determines the amount of redshift (negative z for blue shift) in the absorption and emission spectra of the galaxies. From the Hubble plot above, we can deduce that

- (a) Both the universe A and B are contracting but at different rates.
- (b) The galaxies in the universe A are blue shifted while those in B are red shifted.
- (c) In the universe A, farther galaxies are approaching us at faster velocities than closer galaxies.
- (d) The |z| value is larger for the farther galaxies in B compared to those closer.

7

## 

## **ROUGH WORK**